

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

Método para la calibración de modelos estocásticos de flujo y transporte en aguas subterráneas, para el diseño de redes de monitoreo de calidad del agua

Dra. Jessica Vanessa Briseño Ruiz

Dra. Graciela del Socorro Herrera Zamarrón Asesor Para mis dos amores, David y Andrea.

Agradecimientos

Esta tesis doctoral pudo ser realizada gracias al apoyo de tres instituciones: a la Universidad Nacional Autónoma de México que me brindo la oportunidad de pertenecer a uno de sus programas doctorales, al Consejo Nacional de Ciencia y Tecnología quien me otorgó una beca para realizar este proyecto de investigación y al Instituto Mexicano de Tecnología del Agua por facilitar parte de las instalaciones y equipo para la realización de esta tesis. Asimismo, agradezco el apoyo financiero proporcionado por Dirección General Asuntos del Personal Académico DGAPA–UNAM a través del proyecto PAPIIT–IN112810 para asistir a diversas conferencias y divulgar los resultados de esta tesis.

También quisiera agradecer a la Dra. Graciela Herrera Zamarrón por aceptarme para realizar esta tesis doctoral bajo su dirección. Su valioso conocimiento fue fundamental para la dirección y realización de esta investigación. Asimismo deseo expresar mi reconocimiento a los doctores Álvaro Aldama, Javier Aparicio, Jaime Collado, Carlos Cruickshank V., Carlos Fuentes y Abel Hernández, integrantes de mi comité tutorial por las valiosas contribuciones que me hicieron para mejorar el presente trabajo de investigación.

Del mismo modo, quisiera expresar mi agradecimiento para mis compañeros, Avidan, José Manuel, Yuri, y muy especialmente a Roel y Hugo, con quienes compartí conocimientos y experiencias de tipo profesional y personal que fueron de gran valor.

Y, por supuesto, llego a culminar esta tesis de investigación gracias al apoyo, motivación y amor que me brindo mi esposo David. Sin su apoyo habría sido imposible llevar a término esta tesis, te amo. Agradezco a mi hija Andrea por estar siempre conmigo y motivarme a ser mejor, eres la ilusión más maravillosa de mi vida, te amo. Al mismo tiempo, agradezco a mi mamá y papá, por todo el tiempo, apoyo y esfuerzo que dedicaron en mí, gracias por creer siempre en mí y en que lo lograría, los quiero y admiro mucho. A mis hermanos Francisco, Carlos y Cinthya, gracias por ser mis hermanos, los quiero. Finalmente quiero agradecer a mis suegros por todo su apoyo, también han sido importantes para que culmine esta tesis doctoral.

Resumen

Con frecuencia realizar estudios para el monitoreo de acuíferos, el diagnóstico y monitoreo de intrusión de agua de mar, la planificación del recurso agua subterránea, así como la conservación y protección del agua subterránea, entre otros, requieren de la generación y aplicación de modelos numéricos de flujo y transporte de aguas subterráneas, los cuales precisan de estimaciones confiables de parámetros como la conductividad hidráulica. La conductividad hidráulica presenta una considerable variabilidad espacial debida a la heterogeneidad de las propiedades en los sistemas geológicos y se determina de forma indirecta, lo que lleva a que sus estimaciones tengan un alto grado de incertidumbre. Es por ello que producir estimaciones confiables de la conductividad hidráulica resulta necesario para los modeladores de agua subterránea. Actualmente, con el aumento en el número de dispositivos que permiten la medición de la carga hidráulica en tiempo real y con más opciones en tecnologías para la recolección de muestras de concentración de contaminantes de agua subterránea, resultan muy útiles los métodos para estimar parámetros utilizando como información secundaria este tipo de datos. Además, puede resultar muy ventajoso estimar al mismo tiempo la conductividad hidráulica de un acuífero, la carga hidráulica y/o la concentración de contaminantes. Es por ello, que este trabajo de tesis doctoral tiene como objetivo desarrollar y aplicar un método de estimación conjunta del parámetro logaritmo natural de la conductividad hidráulica y del estado (carga hidráulica y/o concentración del contaminante) utilizando datos del parámetro y el estado, para modelos estocásticos de flujo y/o transporte de agua subterránea.

El método de estimación de parámetros y estado propuesto en esta tesis es una modificación a un método de ensamble suavizado propuesto por Herrera en 1998, al que llamamos ensamble suavizado de Herrera, que se introdujo inicialmente para el diseño óptimo de redes de monitoreo de la calidad del agua subterránea. El método propuesto consiste de tres pasos: 1) Dada la media de la conductividad hidráulica y el semivariograma

I

del logaritmo natural de la conductividad hidráulica, se obtienen realizaciones de este parámetro acordes con los momentos dados mediante un método de simulación. 2) Usando cada realización de la conductividad hidráulica, se emplea el modelo estocástico para producir una realización de la carga hidráulica y/o de la concentración del contaminante. El total de las realizaciones se emplea para obtener la media de logaritmo natural de la conductividad hidráulica (en caso de que sus realizaciones se hayan condicionado con datos) y del estado (carga hidráulica y/o concentración), así como la matriz de covarianza cruzada del parámetro y el estado. 3) Empleando las ecuaciones de actualización del filtro de Kalman se obtiene la estimación del logaritmo natural de la conductividad hidráulica y el estado, utilizando como estimación y covarianza a priori a la media de las realizaciones y su correspondiente matriz de covarianza cruzada espacio-temporal. Para evaluar el método propuesto, se presentan diversos casos de estudio y los resultados indican que el ensamble suavizado de Herrera es exitoso en la estimación conjunta del logaritmo natural de la conductividad hidráulica y del estado, generada usando combinaciones de datos de logaritmo natural de conductividad hidráulica, carga hidráulica y concentración, ya que la magnitud de los errores de las estimaciones obtenidas con respecto a los campos de referencia de las tres variables, siempre decreció. El error cuadrático medio decreció hasta en un 21 % en el caso del logaritmo natural de conductividad hidráulica, en un 64% en el caso de la carga hidráulica y en un 87% en el caso de la concentración.

Un paso intermedio en el trabajo fue probar por primera vez el ensamble suavizado de Herrera en la estimación de la carga hidráulica. Además, debido a que, como se mencionó anteriormente, este método se introdujo para el diseño óptimo de redes de monitoreo de la calidad del agua subterránea, se probó también en el diseño óptimo de redes de monitoreo de la cantidad del agua. Para la prueba se utilizó un caso de estudio sintético, basado en una representación simplificada del acuífero del valle de Querétaro. Los resultados obtenidos indican que el ensamble suavizado de Herrera obtiene estimaciones de la carga hidráulica que se encuentran dentro del 67% de las bandas de confianza con errores porcentuales que decrecen con el aumento en el número de pozos de muestreo. El método de Herrera y Pinder tiene buenas perspectivas para aplicarse exitosamente a redes de monitoreo de los niveles de agua subterránea.

П

Abstract

Making studies of groundwater monitoring, diagnosis and monitoring of seawater intrusion into coastal aquifers, groundwater resource planning and groundwater protection and conservation, among others, require building and applicate numerical models of groundwater flow and solute transport, which require reliable estimates of parameters such as hydraulic conductivity. The hydraulic conductivity has a significant spatial variability due to heterogeneity of the properties in geological systems and is indirectly determined, leading to their estimates have a high degree of uncertainty. For this reason, produce reliable estimates of hydraulic conductivity are necessary for groundwater modelers. Now, with the increase in the number of devices that allow obtaining hydraulic head measurement in real time and with more options in technologies for collecting samples of groundwater contaminants concentrations, methods for estimate parameters using as secondary information such data became more useful. Also, can be very advantageous estimate both, the hydraulic conductivity of an aquifer, the hydraulic head and/or contaminant concentration. Therefore, this doctoral thesis aims to develop and implement a method for joint estimates of the natural logarithm of hydraulic conductivity parameter and the state (hydraulic head and/or contaminant concentration) using data from the parameter and the state, for stochastic models of groundwater flow and/or solute transport. The method of parameter estimation and state proposed in this thesis is a modification to a method of ensemble smoother approach proposed by Herrera in 1998, called Herrera ensemble smoother, which was first introduced to the optimal design of groundwater quality sampling networks. The proposed method consists of three steps: 1) Given the hydraulic conductivity mean and the natural logarithm of hydraulic conductivity semivariogram, random realizations of this parameter are obtained consistent with the moments given and using a simulation method. 2) Using each one of the hydraulic conductivity realization, the stochastic model produce a hydraulic head and/or contaminant concentration realizations. The total realization is used to obtain the natural logarithm of hydraulic conductivity mean (in case their realizations have been conditioned with data) and state (hydraulic head and/or contaminant concentration) and a crosscovariance matrix parameter and state. 3) Using the Kalman filter updating equations, the estimates of the natural logarithm of hydraulic conductivity and the state are obtained, using as a priori estimate and covariance, to the realization mean and the corresponding spacetime cross-covariance matrix. To evaluate the proposed method, some case studies and the results indicate that the Herrera ensemble smoother is successful to the joint estimates of the natural logarithm of hydraulic conductivity and the state, using combinations of the natural logarithm of hydraulic conductivity, hydraulic head and contaminant concentration data. Since the magnitude of the estimates errors respect to the reference fields of the three variables, the errors always decreased. The mean square error decreased in 21% for the natural logarithm of hydraulic conductivity; in 64% for the hydraulic head and 87% for the concentration case.

An intermediate step in the study was testing for first time the Herrera ensemble smoother in the hydraulic head estimate. Furthermore, because, as mentioned above, this method was introduced for the optimal design of groundwater quality sampling networks, also tested in the optimal design of groundwater quantity sampling networks. A synthetic case study was tested, based on a simplified representation of the Queretaro Valley aquifer. The results indicated that the Herrera ensemble smoother obtained hydraulic head estimates that was within 67% confidence bands with percentage errors that decrease with the increase in the number of sampling wells. The Herrera and Pinder method has good prospects to be successfully applied to optimal design of groundwater quantity sampling networks.

Contenido

Resumen	I
Abstract	
Contenido	V
Índice de figuras	IX
Índice de cuadros	XIII
Capítulo 1. Introducción	1
1.1 Planteamiento del problema.	3
1.2 Justificación	5
1.3 Objetivos.	7
Capítulo 2. Estado del arte	9
2.1 Estado del arte de las redes de monitoreo piezométrico	9
2.1.1 Trabajos basados en criterios geoestadísiticos	10
2.1.2 Trabajos basados en el marco de modelación	13
2.2 Estado del arte en lo referente a los métodos del filtro de Kalman	16
2.2.1 Filtro de Kalman discreto	17
2.2.1.1 El proceso de estimación	18
2.2.2 Filtro de Kalman extendido	21
2.2.3 Filtro de Kalman ensamblado y ensamble suavizado	23
2.2.4 Estado del arte en lo referente a la aplicación del filtro de Kalman en agua subterránea	24
2.2.4.1 Aplicaciones en problemas de modelación del agua subterránea	25
2.2.4.2 Filtrado lineal	26
2.2.4.3 Filtrado no lineal	30
Capítulo 3. Método para el diseño óptimo de redes de monitoreo de calidad y de los nivele	s de
 3.1 Método para el diseño óptimo de redes de monitoreo de calidad del agua subterránea de Herrera y Pinder 	40
3.1.1 Metodología de diseño óptimo espacio-temporal de una red de monitoreo de calidad del agua 3.1.2 GWQ-Monitor	41 41
3.2 Adaptación del método de Herrera y Pinder para el diseño óptimo de redes de niveles del agua subterránea	43

3.2.2 Metodología de diseño óptimo espacio-temporal de una red de monitoreo piezométrica	44
3.2.3 Modelo estocástico	45
3.2.4 Filtro de Kalman	46
3.2.5 Estimación de los momentos a priori	48
3.2.6 Función para minimizar la varianza del error de la estimación	49
3.3 Caso de estudio sintético	50
3.3.1 Objetivo de la red de monitoreo	51
3.3.2 Simulación secuencial gaussiana	51
3.3.3. Modelo determinista y estocástico de flujo de agua subterránea	52
3.4 Resultados	57
3.4.1 Análisis para determinar el número total de pozos en la red de monitoreo	61
3.4.2 Red de monitoreo final	64
3.4.3 Bandas de confianza	66
3.5 Conclusiones	69
Capítulo 4. Método propuesto para la estimación de parámetros	71
4.1 Metodología para la estimación del parámetro Ln K y del estado	73
4.1.1 Modelo estocástico	74
4.1.2 Ensamble suavizado de Herrera	75
4.1.3 Estimación de los momentos a priori	77
4.1.4 Proceso de estimación con el ESH	78
Capítulo 5. Estimación del parámetro (Ln K) y del estado (h), caso de estudio: Querétaro	o flujo 81
5.1 Objetivo (Querétaro flujo)	81
5.2 Descripción del caso de estudio sintético	81
5.2.1 Análisis geoestadístico y simulación secuencial gaussiana	81
5.2.2 Modelo de flujo de aguas subterráneas	83
5.2.3 Modelo estocástico de flujo de aguas subterráneas	84
5.2.4 Criterio de convergencia	84
5.3 Estimación de parámetros con el ensamble suavizado	85
5.4 Resultados	87
5.4.1 Cálculo de los errores	
5.4.2 Bandas de confianza	88
5.4.3 Gráficas de distribución espacial de la estimación.	96
Capítulo 6. Estimación del parámetro Ln K y del estado h y c en el caso de estudio: Que flujo y transporte.	rétaro 98
6.1 Objetivo (Querétaro flujo y transporte)	
6.2 Descripción del caso de estudio sintético	
6.3 Modelo completo	

6.3.1 Modelo de flujo y transporte de aguas subterráneas (modelo completo)	
6.3.2 Modelo estocástico de flujo y transporte de aguas subterráneas (modelo completo)	
6.3.3 Criterio de convergencia (modelo completo)	101
6.4 Modelo reducido	
6.4.1 Modelo de flujo y transporte de aguas subterráneas (modelo reducido)	103
6.4.2 Modelo estocástico de flujo y transporte de aguas subterráneas (modelo reducido)	
6.4.3 Criterio de convergencia (modelo reducido)	104
6.5 Calculo de los errores (modelo completo y reducido)	
6.5.1 Bandas de confianza (modelo completo y reducido)	107
6.6 Estimación del parámetro y del estado	
6.6.1 Resultados de la estimación de parámetros (modelo completo)	
6.6.2 Resultados de la estimación de parámetros (modelo reducido)	113
6.7 Comparación de la convergencia entre el modelo completo y el reducido	118
6.8 Comparación de las realizaciones de h, Ln K y c entre el modelo completo y el reducido	118
Capítulo 7. Estimación del parámetro Ln K y del estado h y c, en el caso de estudio:	Pozo de
bombeo con fuente de contaminante	
7.1 Objetivo	
7.2. Descripcion del caso de estudio	
7.2.1 Realizaciones del Ln K empleando Latin Hypercube	122
7.2.3 Modelo determinista de fluio y transporte de aquas subterráneas	124
7.2.4 Modelo estocástico de flujo y transporte de aguas subterráneas	
7.2.5 Calculo del error medio (EM) y del Error cuadrático medio (ECM)	127
7.3 Estimación de parámetros empleando simulación secuencial gaussiana (Caso 1)	127
7.3.1 Estimación de parámetros y estado, Caso 1.1, 1.2 y 1.3	128
7.3.2 Resultados Caso 1.1, 1.2 y 1.3	
7.3.3 Estimación de parámetros y variables. Casos 1.3, 1.4 y 1.5	133
7.3.4 Resultados (Caso 1.3, 1.4 y 1.5)	137
7.4 Estimación de parámetros empleando Latin Hypercube (Caso 2)	138
7.4.1 Estimación de parámetros y estado, Caso 1.1, 1.2 y 1.3	138
7.4.2 Resultados (Caso 2.1, 2.2 y 2.3)	143
7.4.3 Estimación de parámetros y estado, Caso 2.3, 2.4 y 2.5	144
7.4.4 Resultados (Caso 2.3, 2.4 y 2.5)	148
7.5 Resultados comparación de los casos 1.1, 1.2, 1.3, 1.4 y 1.5 (SGSim) y 2.1, 2.2, 2.3, 2.4 y 2.	5 (LHS)149
7.6 Estimación de parámetros y estado, comparando SGSIM y LHS (Caso 5)	149
7.6.1 Estimación de parámetros y estado, Caso 5.1, 5.2, 5.3 y 5.4	150
7.6.2 Resultados (Caso 5.1, 5.2, 5.3 y 5.4)	156

Capítulo 8. Análisis de sensibilidad del ensamble suavizado	159
8.1 Objetivo	159
8.2 Descripción de los casos de estudio	159
8.3 Transformación de datos normales estándar de una variable en lognormales.	160
8.3.1 Transformación de datos normales estándar de una variable en Ln K.	161
8.3.2 Transformar las simulaciones de Ln K en K.	161
8.3.3 Transformación de las realizaciones en el caso de estudio	161
8.4 Descripción del Caso 3 ($\sigma^2_{Ln K}$ =1.0 y diferentes valores de <i>xk</i>)	163
8.4.1 Estimación de parámetros (Caso 3)	164
8.4.2 Resultados (Caso 3)	172
8.5 Descripción del caso 4 (xk =1.6 y diferentes valores de $\sigma^2_{Ln K}$)	173
8.5.1 Estimación de parámetros (Caso 4)	174
8.5.2 Resultados (Caso 4)	182
Capítulo 9. Análisis de resultados	183
Capítulo 10. Conclusiones	193
Bibliografía	197
Anexo A. Simulación secuencial gaussiana	205
A1. Teoría sobre el proceso de simulación gaussiana	205
A2. Simulación secuencial gaussiana SGSIM	206
A3. Análisis geoestadístico con GSLIB	208
Anexo B. Calculo de los errores de los Casos de estudio del Capítulo 8 y 9	210
Anexo C. Posters	272

Índice de figuras

Figura 2. 1 Operación del filtro de Kalman	20
Figura 3. 1 Programas requeridos para obtener la red de monitoreo con GWQMonitor	43
Figura 3. 2 Puntos con mediciones de Ln K	
Figura 3. 3 Características del modelo del AVQ	
Figura 3. 4 Método de Herrera y Pinder.	55
Figura 3. 5 Pozos de monitoreo (izquierda) y malla de estimación (derecha).	57
Figura 3. 6 Criterio de convergencia para la matriz de covarianza.	58
Figura 3. 7 Varianza total (metros ²) vs. número de pozos en la red	59
Figura 3. 8 Varianza del error de la estimación inicial, y varianza final después de muestrear 12, 22 y 33 pozos	60
Figura 3. 9 Orden de importancia de los pozos.	61
Figura 3. 10 Piezometrías de la realización de h (metros) y estimación de h con 12, 22 y 33 pozos	65
Figura 3. 11 Histogramas en 6 puntos de la malla de estimación (no ubicados en los pozos).	68
Figura 3. 12 Histogramas en 5 puntos de la malla de estimación (ubicados en los pozos)	69
Figura 4. 1 Proceso de estimación con el ensamble suavizado.	80
Figura 5. 1 Histograma (izquierda) y semivariograma ajustado (derecha) de los 46 datos normalizados del Ln K	82
Figura 5. 2 Límites del modelo (izq.) y malla para obtener las realizaciones del Ln K (der.).	83
Figura 5. 3 Malla de estimación (superior izq.), media de h (inferior izq.) y media del Ln K (inferior der.).	86
Figura 5. 4 Gráficas del el error medio (1) y del error cuadrático medio (2) de la estimación de h y Ln K.	
Figura 5. 5 Estimación de Ln K	92
Figura 5. 6 Varianza de la estimación de Ln K	
Figura 5. 7 Estimación de h	
Figura 5. 8 Varianza de la estimación de h	
Figura 6. 1 Zona de derrame de contaminante ubicado en el centro del Valle de Querétaro	100
Figura 6. 2 Puntos con datos y puntos de estimación	100
Figura 6. 3 Matriz de covarianza de h, Ln K y de c	101
Figura 6. 4 Gráficas de convergencia de la matriz de h (izq.), de c (centro) y de Ln K (der.).	102
Figura 6.5 Nodos del modelo completo seleccionados como condiciones de frontera del modelo reducido	103
Figura 6. 6 Gráficas de convergencia de la matriz de h (izq.), de c (centro) y de Ln K (der.).	104
Figura 6. 7 Estimación de Ln K y varianza de la estimación de Ln K (modelo completo).	110
Figura 6. 8 Estimación de h y varianza de la estimación de h (modelo completo)	111
Figura 6. 9 Estimación de c y varianza de la estimación de c (modelo completo).	112
Figura 6. 10 Estimación de Ln K y varianza de la estimación de Ln K (modelo reducido).	115
Figura 6. 11 Estimación de h y varianza de la estimación de h (modelo reducido).	116

Figura 6. 12 Estimación de c y varianza de la estimación de c (modelo reducido)	117
Figura 6. 13 Comparación de la realización de h entre el modelo completo y el reducido.	119
Figura 6. 14 Comparación de la realización de c entre el modelo completo y el reducido.	119
Figura 6. 15 Comparación de la realización de Ln K entre el modelo completo y el reducido.	120
Figura 7. 1 Gráfica de convergencia de las realizaciones de Ln K calculadas con el método LHS	123
Figura 7. 2 Puntos de estimación y de los datos de h, K y c	126
Figura 7. 3 Estimación de Ln K con datos de h, c y h y c (Caso 1.1, 1.2 y 1.3 con $\sigma^2_{Ln K}$ =1.0 y xk =1.6)	129
Figura 7. 4 Estimación de h con datos de h, c y h y c (Caso 1.1, 1.2 y 1.3 con $\sigma^2_{Ln K}$ =1.0 y xk =1)	130
Figura 7. 5 Estimación de c con datos de h, c y h y c (Caso 1.1, 1.2 y 1.3 con $\sigma^2_{Ln K}$ =1.0 y xk =1.6)	131
Figura 7. 6 Estimación de Ln K con datos de h y c (Caso 1.3, 1.4 y 1.5 con σ2Ln K=1.0, 0.5, 1.5 y <i>xk</i> =1.6)	133
Figura 7. 7 Estimación de h y c con datos de h y c (Caso 1.3 con $\sigma^2_{Ln K}$ =1.0 y xk =1.6)	134
Figura 7. 8 Estimación de h y c con datos de h y c (Caso 1.4 con $\sigma^2_{Ln K} = 0.5$ y $xk=1.6$)	135
Figura 7. 9 Estimación de h y c con datos de h y c (Caso 1.5 con $\sigma^2_{Ln K}$ =1.5 y xk =1.6)	136
Figura 7. 10 Estimación de Ln K con datos de h, c y h y c (Caso 2.1, 2.2 y 2.3 con $\sigma_{Ln K}^2$ =1.0 y xk =1.6)	140
Figura 7. 11 Estimación de h con datos de h, c y h y c (Caso 2.1, 2.2 y 2.3 con $\sigma_{Ln K}^2$ =1.0 y xk =1.6)	141
Figura 7. 12 Estimación de c con datos de h, c y h y c (Caso 2.1, 2.2 y 2.3 con $\sigma_{Ln K}^2 = 1.0$ y $xk = 1.6$)	142
Figura 7. 13 Estimación de Ln K (Caso 2.3, 2.4 y 2.5 con σ ² _{Ln K} =1.0, 0.5, 1.5 y <i>xk</i> =1.6)	144
Figura 7. 14 Estimación de h y c con datos de h y c (Caso 2.3 con $\sigma_{Ln K}^2 = 1.0$ y $xk = 1.6$)	145
Figura 7. 15 Estimación de h y c con datos de h y c (Caso 2.4 con $\sigma_{Ln K}^2 = 0.5$ y $xk=1.6$)	146
Figura 7. 16 Estimación de h y c con datos de h y c (Caso 2.5 con $\sigma_{Ln K}^2 = 1.5$ y $xk = 1.6$)	147
Figura 7. 17 Estimación de Ln K con datos de c (Caso 5.1, 5.2, 5.3 y 5.4 con $\sigma^2_{Ln K}$ =1.0 y xk =1.6)	151
Figura 7. 18 Estimación de h y c con datos de c (Caso 5.1 con $\sigma_{Ln K}^2 = 1.0$ y $xk=1.6$)	152
Figura 7. 19 Estimación de h y c con datos de c (Caso 5.2 con $\sigma_{Ln K}^2 = 1.0$ y $xk = 1.6$)	153
Figura 7. 20 Estimación de h y c con datos de c (Caso 5.3 con $\sigma_{Ln K}^2$ =1.0 y xk =1.6)	154
Figura 7. 21 Estimación de h y c con datos de c (Caso 5.4 con $\sigma_{Ln K}^2 = 1.0$ y $xk=1.6$)	155
Figura 8. 1 Histograma de una realización normal estándar del Ln	162
Figura 8. 2 Histograma de una realización del Ln K.	163
Figura 8. 3 Histograma de una realización de K.	163
Figura 8. 4 Estimación de Ln K con datos de h y c (Caso 3A, B, C, F, G, H, I, J, y K con $\sigma^2_{Ln K}$ =1.0 y diferentes <i>xk</i>)	165
Figura 8. 5 Estimación de h con datos de h y c (Caso 3A, 3B y 3C con σ^2_{LnK} =1.0 y diferentes <i>xk</i>)	166
Figura 8. 6 Estimación de h con datos de h y c (Caso 3F, 3G y 3H con $\sigma^2_{Ln K}$ =1.0 y diferentes <i>xk</i>)	167
Figura 8. 7 Estimación de h con datos de h y c (Caso 3I, 3J y 3K con $\sigma_{Ln K}^2 = 1.0$ y diferentes <i>xk</i>)	168
Figura 8. 8 Estimación de c con datos de h y c (Caso 3A, 3B y 3C con $\sigma^2_{Ln K} = 1.0$ y diferentes xk)	169
Figura 8. 9 Estimación de c con datos de h y c (σ^2_{LnK} = 1.0 y diferentes <i>xk</i>) (Caso 3F, 3G y 3H)	170
Figura 8. 10 Estimación de c con datos de h y c (Caso 3I, 3J y 3K con $\sigma^2_{Ln K} = 1.0$ y diferentes xk)	171
Figura 8. 11 Estimación de Ln K con datos de h y c ($xk=1.60$ y diferentes $\sigma^2_{Ln K}$)	175
Figura 8. 12 Estimación de h con datos de h y c (Caso 4A, 4B y 4C con xk =1.60 y diferentes $\sigma^2_{Ln K}$)	176
Figura 8. 13 Estimación de h con datos de h y c (Caso 4F, 4G y 4H con xk =1.60 y diferentes $\sigma^2_{Ln K}$)	177
Figura 8. 14 Estimación de h con datos de h y c (Caso 4I, 4J y 4K con xk =1.60 y diferentes σ^2_{LnK})	178
Figura 8. 15 Estimación de c con datos de h y c (Caso 4A, 4B y 4C con $xk=1.60$ y diferentes $\sigma^2_{Ln K}$)	179
Figura 8. 16 Estimación de c con datos de h y c (Caso 4F, 4G y 4H con xk =1.60 y diferentes $\sigma^2_{Ln K}$)	180
Figura 8. 17 Estimación de c con datos de h y c (Caso 4I, 4J y 4K con xk =1.60 y diferentes σ^2_{LnK})	181

Figura B. 1 Gráficas del EM y del ECM de la estimación de Ln K, h y c (Caso 1.1)	213
Figura B. 2 Gráficas del EM y del ECM de la estimación de Ln K, h y c (Caso 1.2)	215
Figura B. 3 Gráficas del EM y del ECM de la estimación de Ln K, h y c (Caso 1.3)	217
Figura B. 4 Gráficas del EM y del ECM de la estimación de Ln K, h y c (Caso 1.4)	219
Figura B. 5 Gráficas del EM y del ECM de la estimación de Ln K, h y c (Caso 1.5)	221
Figura B. 6 Gráficas del EM y del ECM de la estimación de Ln K, h y c (Caso 2.1)	223
Figura B. 7 Gráficas del EM y del ECM de la estimación de Ln K, h y c (Caso 2.2)	225
Figura B. 8 Gráficas del EM y del ECM de la estimación de Ln K, h y c (Caso 2.3)	227
Figura B. 9 Gráficas del EM y del ECM de la estimación de Ln K, h y c (Caso 2.4)	229
Figura B. 10 Gráficas del EM y del ECM de la estimación de Ln K, h y c (Caso 2.5)	231
Figura B. 11 Gráficas del EM y del ECM de la estimación de Ln K, h y c (Caso 5.3)	233
Figura B. 12 Gráficas del EM y del ECM de la estimación de Ln K, h y c (Caso 5.4)	235
Figura B. 13 Gráficas del EM y del ECM de la estimación de Ln K, h y c (Caso 3A)	237
Figura B. 14 Gráficas del EM y del ECM de la estimación de Ln K, h y c (Caso 3B)	239
Figura B. 15 Gráficas del EM y del ECM de la estimación de Ln K, h y c (Caso 3C)	241
Figura B. 16 Gráficas del EM y del ECM de la estimación de Ln K, h y c (Caso 3F)	243
Figura B. 17 Gráficas del EM y del ECM de la estimación de Ln K, h y c (Caso 3G)	245
Figura B. 18 Gráficas del EM y del ECM de la estimación de Ln K, h y c (Caso 3H)	247
Figura B. 19 Gráficas del EM y del ECM de la estimación de Ln K, h y c (Caso 3I)	249
Figura B. 20 Gráficas del EM y del ECM de la estimación de Ln K, h y c (Caso 3J)	251
Figura B. 21 Gráficas del EM y del ECM de la estimación de Ln K, h y c (Caso 3K)	253
Figura B. 22 Gráficas del EM y del ECM de la estimación de Ln K, h y c (Caso 4A)	255
Figura B. 23 Gráficas del EM y del ECM de la estimación de Ln K, h y c (Caso 4B)	257
Figura B. 24 Gráficas del EM y del ECM de la estimación de Ln K, h y c (Caso 4C)	259
Figura B. 25 Gráficas del EM y del ECM de la estimación de Ln K, h y c (Caso 4F)	261
Figura B. 26 Gráficas del EM y del ECM de la estimación de Ln K, h y c (Caso 4G)	263
Figura B. 27 Gráficas del EM y del ECM de la estimación de Ln K, h y c (Caso 4H)	265
Figura B. 28 Gráficas del EM y del ECM de la estimación de Ln K, h y c (Caso 4I)	267
Figura B. 29 Gráficas del EM y del ECM de la estimación de Ln K, h y c (Caso 4J)	269
Figura B. 30 Gráficas del EM y del ECM de la estimación de Ln K, h y c (Caso 4K)	271

Índice de cuadros

Cuadro 3. 1 Comparación de los errores en la estimación con las opciones consideradas	64
Cuadro 3. 2 Resultados de las bandas de confianza de la estimación en los casos de estudio	67
Cuadro 5. 1 Comparación de la convergencia de la matriz de covarianza de las realizaciones estocásticas	85
Cuadro 5. 2 Descripción de las pruebas	87
Cuadro 5. 3 Errores y varianzas estimadas en puntos de estimación.	89
Cuadro 5. 4 Resultados de las bandas de confianza (BC) de la estimación en los casos de estudio	91
Cuadro 6. 1 Comparación de la convergencia de la matriz de covarianza de las realizaciones estocásticas	102
Cuadro 6. 2 Comparación de la convergencia de la matriz de covarianza de las realizaciones estocásticas (mod	elo reducido).
	104
Cuadro 6. 3 Errores y varianzas estimadas en puntos de estimación.	106
Cuadro 6. 4 Resultados de las bandas de confianza (BC) de la estimación.	107
Cuadro 6. 5 Descripción de las pruebas (modelo completo)	108
Cuadro 6. 6 Comparación de la convergencia entre el modelo completo y el reducido	118
Cuadro 7. 1 Convergencia de las realizaciones de Ln K calculadas con LHS	124
Cuadro 7. 2 Descripción del Caso de estudio 1 (Caso correcto SGSIM)	128
Cuadro 7. 3 Descripción del Caso de estudio 1 (Caso correcto SGSIM)	138
Cuadro 7. 4 Comparación SGSIM VS LHS	149
Cuadro 8. 1 Casos de estudio con valores diferentes de la media de K	164
Cuadro 8. 2 Casos de estudio diferentes medias de K	173
Cuadro A1. 1 Librerías del GSLIB para el análisis Geoestadístico	209
Cuadro B. 1 Cálculo del EM y del ECM de la estimación de Ln K, h y c (Caso 1.1)	212
Cuadro B. 2 Cálculo del EM y del ECM de la estimación de Ln K, h y c (Caso 1.2)	214
Cuadro B. 3 Cálculo del EM y del ECM de la estimación de Ln K, h y c (Caso 1.3)	216
Cuadro B. 4 Cálculo del EM y del ECM de la estimación de Ln K, h y c (Caso 1.4)	218
Cuadro B. 5 Cálculo del EM y del ECM de la estimación de Ln K, h y c (Caso 1.5)	220
Cuadro B. 6 Cálculo del EM y del ECM de la estimación de Ln K, h y c (Caso 2.1)	222
Cuadro B. 7 Cálculo del EM y del ECM de la estimación de Ln K, h y c (Caso 2.2)	224
Cuadro B. 8 Cálculo del EM y del ECM de la estimación de Ln K, h y c (Caso 2.3)	226
Cuadro B. 9 Cálculo del EM y del ECM de la estimación de Ln K, h y c (Caso 2.4)	228
Cuadro B. 10 Cálculo del EM y del ECM de la estimación de Ln K, h y c (Caso 2.5)	230
Cuadro B. 11 Cálculo del EM y del ECM de la estimación de Ln K, h y c (Caso 5.3)	232

Cuadro B. 12 Cálculo del EM y del ECM de la estimación de Ln K, h y c (Caso 5.4)	. 234
Cuadro B. 13 Cálculo del EM y del ECM de la estimación de Ln K, h y c (Caso 3A)	. 236
Cuadro B. 14 Cálculo del EM y del ECM de la estimación de Ln K, h y c (Caso 3B)	. 238
Cuadro B. 15 Cálculo del EM y del ECM de la estimación de Ln K, h y c (Caso 3C)	. 240
Cuadro B. 16 Cálculo del EM y del ECM de la estimación de Ln K, h y c (Caso 3F)	. 242
Cuadro B. 17 Cálculo del EM y del ECM de la estimación de Ln K, h y c (Caso 3G)	. 244
Cuadro B. 18 Cálculo del EM y del ECM de la estimación de Ln K, h y c (Caso 3H)	. 246
Cuadro B. 19 Cálculo del EM y del ECM de la estimación de Ln K, h y c (Caso 3I)	. 248
Cuadro B. 20 Cálculo del EM y del ECM de la estimación de Ln K, h y c (Caso 3J)	. 250
Cuadro B. 21 Cálculo del EM y del ECM de la estimación de Ln K, h y c (Caso 3K)	. 252
Cuadro B. 22 Cálculo del EM y del ECM de la estimación de Ln K, h y c (Caso 4A)	. 254
Cuadro B. 23 Cálculo del EM y del ECM de la estimación de Ln K, h y c (Caso 4B)	. 256
Cuadro B. 24 Cálculo del EM y del ECM de la estimación de Ln K, h y c (Caso 4C)	. 258
Cuadro B. 25 Cálculo del EM y del ECM de la estimación de Ln K, h y c (Caso 4F)	. 260
Cuadro B. 26 Cálculo del EM y del ECM de la estimación de Ln K, h y c (Caso 4G)	. 262
Cuadro B. 27 Cálculo del EM y del ECM de la estimación de Ln K, h y c (Caso 4H)	. 264
Cuadro B. 28 Cálculo del EM y del ECM de la estimación de Ln K, h y c (Caso 4I)	. 266
Cuadro B. 29 Cálculo del EM y del ECM de la estimación de Ln K, h y c (Caso 4J)	. 268
Cuadro B. 30 Cálculo del EM y del ECM de la estimación de Ln K, h y c (Caso 4K)	. 270

Capítulo 1. Introducción

En nuestros días a nivel mundial un importante desafío consiste en proteger las reservas de aguas subterráneas de una posible contaminación. Sin embargo, existen zonas que ya tienen este problema, debido a una historia de prácticas humanas que no preservaron el agua y el suelo. El agua subterránea puede contaminarse por varias fuentes puntuales y no puntuales. Las fuentes principales de contaminación del agua subterránea son los escapes o fugas de sustancias químicas peligrosas desde tanques de almacenamiento subterráneos y la infiltración de sustancias químicas orgánicas peligrosas, compuestos tóxicos de metales pesados desde rellenos sanitarios, tiraderos de desechos peligroso abandonados, y desde lagunas para almacenamiento de desechos industriales localizadas por arriba o cerca de los acuíferos. Además de estas fuentes de contaminación se tiene que la sobre explotación de los acuíferos ocasiona problemas de degradación de la calidad del agua.

En México, con relación a las extracciones de agua subterránea se tiene que el mayor consumidor es la agricultura con un promedio del 81%, seguido del uso doméstico 13%, el uso industrial 4% y otros usos 2% (Castelan, 2000). El volumen de agua que se suministra a las ciudades proviene del subsuelo en un 70%, con lo que se abastecen aproximadamente 75 millones de personas, por lo que el agua subterránea se ha convertido en un elemento indispensable en el suministro a los diferentes usuarios. Sin embargo, esta situación ha llevado a tener problemas de sobre explotación de acuíferos, lo que lleva al deterioro de la calidad del agua de numerosos acuíferos del país, principalmente por intrusión salina; y migración de agua fósil de mala calidad, así como por la contaminación generada en las ciudades y zonas agrícolas. Los problemas de calidad del agua subterránea en México se presentan en 17 acuíferos costeros con problemas de intrusión salina, además se han identificado alrededor de 40 acuíferos que presentan cierta degradación de la calidad del agua subterránea por actividades antropogénicas o por causas de origen natural (PNH, 2007-2012).

La contaminación del agua subterránea es mucho más difícil de detectar que la contaminación del agua superficial; no obstante, debido a la gran importancia que tiene para la población a nivel mundial se realizan estudios para el monitoreo de acuíferos, el diagnostico y monitoreo de intrusión de agua de mar, además de estudios para la planificación del recurso agua subterránea así como la conservación y protección del agua subterránea, etc. Con frecuencia para realizar estos estudios se requiere de la generación y aplicación de modelos numéricos de flujo y transporte de aguas subterráneas, los cuales precisan de estimaciones confiables de parámetros como la conductividad hidráulica. Es por ello, que este trabajo de tesis doctoral tiene como objetivo principal desarrollar y aplicar un método de estimación conjunta del parámetro logaritmo natural de la conductividad hidráulica y del estado (carga hidráulica y/o concentración del contaminante) utilizando datos de las tres variables, para un modelo estocástico de flujo y/o transporte de agua subterránea. El método de estimación conjunta de parámetros y estado se implementa en diversos casos de estudio.

Un método para el diseño óptimo de redes de monitoreo de la calidad del agua subterránea, que involucra el espacio y el tiempo de forma combinada es el propuesto por Herrera (1998) y aplicado por Herrera y Pinder (2005); sin embargo esté método no se había aplicado al diseño óptimo de redes de los niveles de agua subterránea. Por lo anterior y debido a que la variable de la carga hidráulica se puede utilizar en el método de estimación conjunta de parámetros y estado a desarrollar en esta tesis, otro objetivo de este trabajo de tesis doctoral consiste en probar y mostrar por primera vez la metodología de Herrera y Pinder, en el diseño de una red de monitoreo de los niveles del agua subterránea.

El capítulo dos de esta tesis se divide en dos secciones; en la primera, se presenta una revisión del estado del arte en lo referente a la implementación de filtro de Kalman y sus derivaciones en aplicaciones relacionadas con el agua subterránea, en la segunda sección se presenta la revisión del estado del arte en lo referente al diseño de redes de monitoreo de los niveles del agua subterránea. En el capítulo tres se presenta la adaptación e implementación del método propuesto originalmente por Herrera (1998) y probado por Herrera y Pinder (2005) para el diseño óptimo de redes de monitoreo de calidad del agua subterránea, en el diseño óptimo de redes de monitoreo de los niveles del agua subterránea;

la adaptación se implementa en un caso de estudio sintético basado en la representación del acuífero del Valle de Querétaro, México. La descripción del método propuesto en esta tesis para la estimación de parámetros y estado se presenta en el capítulo cuatro. La implementación del método para estimar de forma conjunta el parámetro de logaritmo natural de la conductividad hidráulica y: a) la carga hidráulica en un caso de estudio sintético que emplea un modelo estocástico de flujo de agua subterránea usando datos de carga hidráulica y/o de logaritmo natural de la conductividad hidráulica se presenta en el capítulo cinco y b) la carga hidráulica y la concentración de contaminante en un caso de estudio sintético que emplea un modelo estocástico de flujo y transporte de agua subterránea usando datos de carga hidráulica o concentración o de logaritmo natural de la conductividad hidráulica se presenta en el capítulo seis. En el capítulo 7 se presenta la implementación y comparación del método propuesto para estimar de forma conjunta el parámetro de logaritmo natural de la conductividad hidráulica y el estado usando datos de carga hidráulica o concentración, en un caso de estudio sintético que emplea dos métodos de simulación para generar realizaciones de conductividad hidráulica conocidos como Muestreo por hipercubo latino y simulación secuencial gaussiana. El capítulo ocho presenta el análisis de sensibilidad del método para la estimación conjunta del parámetro y del estado usando datos de carga hidráulica y concentración, con dos de los parámetros para generar las realizaciones de logaritmo natural de la conductividad que son: la media de la conductividad y la varianza de logaritmo natural de la conductividad hidráulica. El análisis de los resultados así como las conclusiones y recomendaciones de esta tesis se presentan en el capítulo nueve y diez, respectivamente.

1.1 Planteamiento del problema.

Actualmente un importante desafío en diversos lugares consiste en proteger las reservas de agua subterránea, sin embargo, existen zonas que ya tienen este problema debido a una historia de prácticas humanas que no preservaron el agua y el suelo. El agua subterránea se ha convertido en un elemento indispensable en el suministro a los diferentes usuarios; esta situación en ocasiones ha llevado a tener problemas de sobreexplotación de acuíferos, deterioro de la calidad del agua de numerosos acuíferos, problemas de intrusión salina; migración de agua fósil de mala calidad, así como por la contaminación generada en las

ciudades y zonas agrícolas. Por ello realizar diversos estudios para el monitoreo de acuíferos, el diagnostico y monitoreo de intrusión de agua de mar, la planificación del recurso agua subterránea y la conservación y protección del agua subterránea, etc., resultan necesarios para una gestión integral del agua subterránea. Sin embargo, para realizar estos estudios con frecuencia se requiere del desarrollo y aplicación de modelos numéricos de flujo y transporte de agua subterránea, en los cuales se requiere contar con estimaciones de los parámetros de un acuífero tal como la conductividad hidráulica. La conductividad hidráulica tiene una considerable variabilidad espacial debida principalmente a que se mide de forma indirecta en los acuíferos, lo que lleva a que sus estimaciones tengan cierto grado de incertidumbre. La determinación con alta incertidumbre de las propiedades hidrogeológicas de un acuífero podría proporcionar errores de estimación en la predicción del flujo y transporte de agua subterránea al aplicar modelos numéricos.

En lo referente al diseño de redes de monitoreo existen tres puntos de vista según Herrera y Pinder (2005), que han influido en el diseño de redes de monitoreo de agua subterránea. El primero conocido como marco hidrogeológico, llamado así por Loaiciga *et al.* (1992), en donde tanto la red de monitoreo así como el programa o tiempos para realizar el muestreo, se definen con base en las consideraciones hidrogeológicas del sitio tales como: geomorfología de la zona de estudio, zonas de fracturas, áreas de recarga y descarga, naturaleza de los límites de la unidad hidrogeológica, la relación acuífero río, etc., sin emplear estadística avanzada o técnicas probabilísticas. El segundo punto de vista llamado marco estadístico propone analizar datos y definir la red de monitoreo, en base solo en deducciones obtenidas de datos. El tercer y último punto de vista llamado marco modelado, combina el conocimiento de la física del agua subterránea y transporte de contaminantes resumido en un modelo matemático, con datos. Es importante mencionar que, existen muchos trabajos dedicados al diseño de redes de monitoreo de la calidad del agua subterránea, en los que las decisiones de monitoreo involucran al espacio como punto central. Sin embargo estos trabajos no incluyen la variable tiempo en el diseño.

El método de Herrera (1998), es el primer esfuerzo documentado dedicado al diseño espacio-temporal de una red de monitoreo de aguas subterráneas en las que la redundancia espacial y temporal combinada, es considerada por el uso de un modelo de transporte estocástico, en donde la velocidad es un campo espacial correlacionado aleatoriamente. El

4

método involucra el espacio y el tiempo de forma combinada y se divide en tres partes: 1) un método que se usa para predecir la incertidumbre de la estimación de la concentración del contaminante cuando se tienen datos en un conjunto de posiciones y tiempos, 2) un método que utiliza esta predicción de la incertidumbre como criterio para escoger las posiciones y los tiempos de muestreo, los cuales definen la red de monitoreo y su programa de muestreo, y 3) Un procedimiento para producir una estimación de concentración del contaminante y actualizarla como datos disponibles.

El método de Herrera para el diseño de redes de monitoreo piezométricas y de calidad del agua, emplea un modelo de flujo y transporte estocástico. Estos modelos estocásticos tienen la ventaja de que estiman la incertidumbre de las predicciones del modelo, lo que permite reconocer áreas que pueden tener incertidumbre, haciendo a la metodología efectiva en la selección de las posiciones y tiempos de muestreo que minimizan la incertidumbre de estimación. Sin embargo, aún y cuando existe gran cantidad de información sobre el área de estudio, resulta muy laborioso obtener un buen ajuste entre los resultados del modelo y los diferentes campos de datos, debido a que la metodología de Herrera no incluye hasta ahora algún método de calibración de los modelos estocásticos de flujo y transporte.

1.2 Justificación.

El agua subterránea en México es un recurso muy importante para el suministro de agua para consumo humano, industrial y agrícola principalmente. Por ello realizar diversos estudios para el monitoreo de acuíferos, el diagnostico y monitoreo intrusión de agua de mar, la planificación del recurso agua subterránea y la conservación y protección del agua subterránea, etc., resultan necesarios para una gestión integral del agua subterránea. Sin embargo, con frecuencia para realizar estos estudios, se requiere de la generación y aplicación de modelos de flujo y transporte de aguas subterráneas, los cuales requieren de de estimaciones confiables de parámetros como la conductividad hidráulica. La conductividad hidráulica presenta una considerable variabilidad espacial debida a la heterogeneidad de las propiedades en los sistemas geológicos y se determina de forma indirecta, lo que lleva a que sus estimaciones tengan cierto grado de incertidumbre. Es por ello que producir estimaciones confiables de la conductividad hidráulica resulta muy

necesario para los modeladores de agua subterránea. Actualmente, con el aumento en el número de dispositivos que permiten la medición de la carga hidráulica en tiempo real y con más opciones en tecnologías para la recolección de muestras de concentración de contaminantes de agua subterránea, resultan muy útiles los métodos para estimar parámetros con este tipo de datos. Además de que puede resultar muy ventajoso estimar al mismo tiempo la conductividad hidráulica de un acuífero, la carga hidráulica y/o la concentración de contaminantes. Es por ello, que este trabajo de tesis tiene como propósito principal desarrollar y aplicar un método de estimación conjunta del parámetro logaritmo natural de la conductividad hidráulica y del estado (carga hidráulica y/o concentración del contaminante) utilizando datos de las tres variables, para un modelo estocástico de flujo y/o transporte de agua subterránea.

En el diseño óptimo de redes de monitoreo de la calidad del agua subterránea, un método que involucra el espacio y el tiempo de forma combinada es el propuesto por Herrera (1998) y aplicado por Herrera y Pinder (2005); sin embargo esté método no se había aplicado al diseño óptimo de redes de los niveles de agua subterránea. Por lo anterior y debido a que la variable de la carga hidráulica se puede utilizar en el método de estimación conjunta de parámetros y estado, otro de los objetivos de este trabajo de tesis doctoral consiste en probar y mostrar por primera vez la metodología de Herrera y Pinder, en el diseño de una red de monitoreo de los niveles del agua subterránea.

El método de estimación conjunta de parámetros y estado para un modelo estocástico de flujo y/o transporte de agua subterránea propuesto en esta tesis, podrá servir de base para en un trabajo futuro desarrollar un método de calibración de modelos estocásticos de flujo y transporte en aguas subterráneas y adaptarlo al método desarrollado por Herrera y Pinder.

1.3 Objetivos.

El objetivo general a alcanzar en esta de tesis de doctorado es el siguiente:

 Desarrollar y aplicar un método de estimación conjunta del parámetro logaritmo natural de la conductividad hidráulica y del estado (carga hidráulica y/o concentración) para un modelo estocástico de flujo y transporte de aguas subterráneas.

Los objetivos específicos a alcanzar en esta de tesis de doctorado son los siguientes:

- Extender el método de ensamble suavizado propuesto por Herrera (1998) para la estimación conjunta del logaritmo natural de la conductividad hidráulica y el estado.
- Probar el método propuesto para estimar de forma conjunta el parámetro de logaritmo natural de la conductividad hidráulica y:
 - la carga hidráulica en un caso de estudio sintético que emplea un modelo estocástico de flujo de agua subterránea, usando datos de carga hidráulica y/o de logaritmo natural de la conductividad hidráulica.
 - la carga hidráulica y la concentración de contaminante en un caso de estudio sintético que emplea un modelo estocástico de flujo y transporte de agua subterránea usando datos de carga hidráulica o concentración o de logaritmo natural de la conductividad hidráulica.
- Probar y comparar el método propuesto para estimar de forma conjunta el parámetro de logaritmo natural de la conductividad hidráulica y el estado (carga hidráulica y concentración) usando datos de carga hidráulica o concentración, en un caso de estudio sintético que emplea dos métodos de simulación para generar realizaciones de conductividad hidráulica conocidos como Muestreo por hipercubo latino y simulación secuencial gaussiana.

- Realizar un análisis de sensibilidad del método propuesto en esta tesis para la estimación conjunta del parámetro y del estado usando datos de carga hidráulica y concentración, con dos de los parámetros del semivariograma empleados para generar las realizaciones de logaritmo natural de la conductividad que son: la media de la conductividad y la varianza de logaritmo natural de la conductividad hidráulica.
- Adaptar y probar el método propuesto originalmente por Herrera (1998) y probado por Herrera y Pinder (2005) para el diseño óptimo de redes de monitoreo de calidad del agua subterránea, en el diseño óptimo de redes de monitoreo de los niveles del agua subterránea.

Capítulo 2. Estado del arte

Este capítulo se encuentra divido en dos secciones, la primera presenta el estado del arte referente al diseño de redes de monitoreo piezométrico y la segunda parte presenta el estado del arte referente a la estimación de parámetros utilizando métodos del filtro de Kalman

2.1 Estado del arte de las redes de monitoreo piezométrico

A continuación se presenta un resumen de trabajos que proponen métodos para el diseño de redes monitoreo del agua subterránea. Se incluyen también algunos que presentan métodos para el diseño de redes de monitoreo de la calidad del agua subterránea, ya que con algunas modificaciones pueden servir de base en el diseño de redes que permitan una adecuada caracterización de la carga hidráulica en acuíferos.

Tres puntos de vista han influenciado mucho el diseño de redes de monitoreo del agua subterránea (ASCE,2003) En el primero de ellos, que llamamos marco hidrológico siguiendo a Loaiciga *et al.* (1992), la red y su programa de muestreo se definen por consideraciones que toman en cuenta solamente las condiciones hidrológicas del sitio, sin recurrir a técnicas estadísticas o probabilísticas avanzadas. El segundo propone el análisis de datos dentro de un marco estadístico y define la red de muestreo basado en inferencias obtenidas de los datos, éste se llama marco estadístico. Al último punto de vista le llamaremos aquí marco de modelación, en éste se utilizan modelos matemáticos del agua subterránea para determinar posiciones y frecuencias de muestreo.

2.1.1 Trabajos basados en criterios geoestadísiticos

A continuación se presenta de manera cronológica los trabajos basados en criterios geoestadísiticos, que pueden ser incluidos en el marco estadístico y primero se describen a los trabajos en los que únicamente se seleccionan de forma óptima las posiciones de muestreo y posteriormente los que incluyen también la selección óptima de frecuencias o tiempos de muestreo.

- Rouhani (1985). Propone el método de reducción de la varianza para aumentar una red de monitoreo existente. La red de monitoreo se aumenta agregando muestras de pozos en lugares que minimizan la varianza del error de la estimación de una variable, calculada por medio de kriging. Este trabajo no involucra la frecuencia temporal de muestreo en el diseño. La aplicación de la red de monitoreo se hace para la concentración de un contaminante, sin embargo, el mismo método se puede utilizar en el diseño de redes de monitoreo piezométrico.
- Samper y Carrera (1990). Presentan una comparación de diferentes métodos para el diseño de redes de observación basados en la implementación del kriging. Dividen el diseño de las redes de monitoreo en dos grandes categorías: el caso en el que se añade un punto de medición a una red ya existente y en el que se añaden varios puntos. Incluimos aquí únicamente lo referente a la segunda categoría, que es la más relevante para este trabajo. En este caso se consideran varios métodos para añadir posiciones de puntos de medición:
 - ✓ método de inclusiones sucesivas (se van probando uno por uno puntos alternativos que se unen a un conjunto dado de pozos y se escoge el que minimiza la varianza del error de la estimación).
 - ✓ intercambios sucesivos óptimos (se intercambian los elementos de un conjunto dado de puntos existentes con los elementos de un conjunto de puntos alternativos para encontrar la mínima varianza).
 - enumeración total (se analizan subconjuntos del total de pozos a monitorear; se empieza con todos los subconjuntos de un elemento, luego los que se formen con

dos elementos y así sucesivamente hasta llegar al subconjunto que proporcione la incertidumbre deseada.

 "rama y límite" (inverso al anterior, el conjunto inicial corresponde al conjunto total de puntos disponibles y se van suprimiendo puntos).

Dentro de esta categoría también se considera la definición de redes de monitoreo mediante el uso de mallas regulares que pueden tener elementos con diversas geometrías (se ubican pozos de una red de monitoreo en cada uno de los elementos o nodos de una malla). En este caso se trabaja únicamente con los parámetros que definen la malla regular y se establece una relación entre la varianza y el costo asociado con estos parámetros.

Del análisis realizado para el diseño de una red se concluye que el método de inclusiones sucesivas aunque es subóptimo resulta dar buenos resultados en la elección de puntos de estimación además de que resulta ser una metodología muy económica. Es por lo anterior que esta metodología es la que se ha utilizado frecuentemente, obteniendo buenos resultados.

Cameron y Hunter (2000). Propusieron un método para reducir la redundancia espacial y temporal por medio de dos algoritmos: uno temporal y otro espacial. El algoritmo temporal combina series de tiempo de datos de muchos pozos para construir un semivariograma temporal compuesto y usa el semivariograma para definir frecuencias de muestreo que proporcionen datos temporales sin correlación. En el algoritmo espacial se obtiene una estimación inicial de la pluma del contaminante usando kriging con todos los pozos existentes. Se asignan pesos numéricos, llamados pesos de kriging global, a la posición de los pozos para evaluar su contribución relativa a la estimación de la pluma. Subconjuntos de pozos con los pesos de kriging global más bajos se remueven temporalmente y se hace una nueva estimación de la pluma. La variancia del kriging de la nueva estimación se compara con la de la estimación inicial para ver si la incertidumbre ha aumentado substancialmente. Si no es así, se quita el subconjunto de los pozos, en caso contrario, el subconjunto de pozos no se remueve. En este trabajo no se considera en el análisis la correlación cruzada espacio-tiempo de la concentración de contaminante.

- Nunes et al. (2004). Proponen optimizar redes de monitoreo del agua subterránea considerando una reducción en la redundancia espacial y/o temporal. Se proponen tres modelos de optimización para seleccionar el mejor subconjunto de estaciones de una red de monitoreo del agua subterránea: 1. Uno que maximiza la certidumbre espacial, 2. Uno que minimiza la redundancia temporal y 3. Un modelo que maximiza la certidumbre espacial y minimiza la redundancia temporal. Los modelos de optimización propuestos se resuelven con recocido simulado, junto con un algoritmo de parametrización usando entropía estadística. Los tres modelos se derivan de una ecuación que considera dos términos: uno espacial y otro temporal, los modelos empleados en el artículo resultan de simplificaciones a la ecuación objetivo. La ecuación general de la que se derivan los modelos contiene un término de varianza y un término que considera series de tiempo, las series de tiempo son representadas por funciones matemáticas comunes basadas en juicio empírico y experiencia.
- Kumar *et al.*(2005). Diseñaron una red de monitoreo de la carga hidráulica basándose en la teoría de las variables regionalizadas. Se le quita la tendencia a los datos al ajustarle un plano. Se ajusta un modelo lineal al semivariograma de los residuos obtenidos. Se estiman valores mediante kriging universal y se determinan los errores en la estimación mediante un procedimiento de validación cruzada (jacknife).
- Faisal et al. (2007). Optimizaron una red de monitoreo de la carga hidráulica para la estimación de un balance de aguas subterráneas en una cuenca de la India. Para la determinación del balance se utilizó el método de la fluctuación del doble espejo de agua (llamado así porque considera época de secas y de lluvias) propuesto por Maréchal et al. (2006). Se llevó a cabo un análisis geoestadístico para los datos recabados de carga hidráulica. El criterio de optimización de la red se basó en la validación cruzada del modelo de semivariograma propuesto. Se le asigna un orden de importancia a cada pozo de acuerdo al tamaño del error promedio de 3 años resultado de la validación cruzada en cada sitio. Se realizó el cálculo del balance de aguas subterráneas para distintos subconjuntos de pozos (siguiendo el orden de importancia obtenido de la validación cruzada). Se seleccionó el número de pozos

suficiente para no tener pérdida de información en la determinación del balance del agua subterránea.

Esquivel Victoria (2008). Para el rediseño de una red de monitoreo de los niveles del agua en el acuífero de la Comarca Lagunera, México, Esquivel Victoria (2008) utilizó un método geoestadístico propuesto por Ahmed (2004) para el diseño óptimo de redes de monitoreo de la temperatura del aire. En este método el área de estudio se divide en una malla regular y se obtiene la estimación y desviación estándar del error de la estimación para cada bloque utilizando kriging ordinario para los bloques con el total de datos existentes, la optimización se basa en la comparación de la desviación estándar del error de la estimación por el usuario, conforme se van quitando o añadiendo datos en la estimación.

2.1.2 Trabajos basados en el marco de modelación

A continuación se presenta de manera cronológica los trabajos los trabajos que pueden ser incluidos en el marco de modelación y primero se describen a los trabajos en los que únicamente se seleccionan de forma óptima las posiciones de muestreo y posteriormente los que incluyen también la selección óptima de frecuencias o tiempos de muestreo.

Loaiciga (1989). Al parecer Loaiciga (1989) fue el primer autor que propuso un método para el diseño espacio-temporal de redes de monitoreo del agua subterránea en el que la redundancia espacial y temporal de una red de monitoreo se analizaron en conjunto. El método combina kriging con una ecuación de transporte estocástica para predecir la incertidumbre del error de las concentraciones de un contaminante estimadas. Él usó el método de kriging generalizado para incluir el dominio en espacio y tiempo, y de esa manera evaluar cómo una muestra tomada de un pozo dado en un tiempo dado reduce la incertidumbre de todas las posiciones y tiempos en los que se obtendrían estimaciones. Para poder resolver el sistema de kriging es necesario contar con la matriz de covariancia espacio-temporal del error de la concentración en las posibles posiciones y tiempos de muestreo. Loaiciga derivó los

elementos de la matriz de covariancia de la ecuación de advección-dispersión que gobierna el transporte de masa, discretizada numéricamente. Usó un término aditivo de error aleatorio en la ecuación de transporte que considera la incertidumbre del modelo; este término cambia de un paso de tiempo a otro en el modelo y en cada nuevo paso es independiente de todos los errores previos. Para la optimización de la red, Loaiciga buscó determinar dónde y cuándo muestrear para minimizar la variancia del error de la concentración estimada (obtenida del sistema de kriging espaciotemporal) en las posiciones de interés, sujeto a constricciones de costo e insesgo. La determinación de un plan de muestreo óptimo se plantea como un problema de programación entera mixta.

Yangxiao et al. (1991). Yangxiao et al. (1991) combinaron el procedimiento de estimación de parámetros propuesto en un trabajo previo (Van Geer, Te Stroet, & Yangxiao, 1991) con un método para el diseño de redes de monitoreo de los niveles del agua subterránea. El objetivo del diseño de su red de monitoreo fue observar los cambios espacio-temporales de los niveles del agua, causados por la extracción de agua subterránea. Se utilizó un modelo de flujo determinista al que se le sumó un error incierto con correlación espacial. Los autores utilizaron un filtro de Kalman para estimar los parámetros de la ecuación de flujo (llamados parámetros deterministas) y los del modelo de la matriz de covarianza del error (llamados parámetros estocásticos). La calibración se realizó para un período en el que las condiciones estacionarias se cumplieron y en la que todas las matrices necesarias en el algoritmo del filtro de Kalman no cambiaron con el tiempo. El método para la estimación de los parámetros se aplicó de forma secuencial: primero se propone una estimación del error de modelo de covarianza y la primera ronda de calibración de los parámetros deterministas se lleva a cabo, posteriormente estos parámetros se mantienen constantes y la primera ronda de calibración de los parámetros estocásticos se obtiene. Estos dos pasos se repiten varias veces hasta que un criterio de error preestablecido para ambos conjuntos de parámetros se cumple. Se analizaron dos ejemplos de aplicación para el diseño de redes de monitoreo, en ambos las frecuencias de muestreo se mantuvieron fijas y la densidad de la red se minimizó con la restricción de un valor umbral para la desviación estándar del error de la estimación. Se analizaron varias alternativas y la mejor fue elegida por inspección.

Los autores discutieron la importancia relativa de la densidad de la red espacial y la frecuencia de muestreo en relación con el tiempo de respuesta del sistema. Encontraron que si el sistema reacciona rápido, la optimización espacial de la red es importante. Si el sistema reacciona lentamente, tanto la optimización temporal como la espacial son importantes.

- Herrera (1998). Propuso una metodología para el diseño óptimo espacio-temporal de redes de monitoreo de la calidad del agua subterránea. El método combina un filtro de Kalman estático con un modelo de transporte estocástico para predecir la varianza del error de las concentraciones estimadas. Una de las entradas para el filtro de Kalman es la matriz de covarianza espacio-temporal de la concentración del contaminante en todas las posiciones y tiempo de muestreo posibles. Los elementos de esta matriz de covarianza se derivan de la ecuación de un modelo numérico de transporte de masa con advección y dispersión que gobierna el transporte de masa numéricamente discretizada. En este modelo las variables aleatorias que se consideran son la conductividad hidráulica y la fuente del contaminante. Para optimizar la red, se busca determinar dónde y cuándo muestrear para minimizar una función de la varianza del error de la concentración estimada (obtenida del filtro de Kalman) en las posiciones y tiempos de interés. La determinación de un plan de muestreo óptimo se obtiene a través de un procedimiento secuencial que selecciona los puntos de muestreo en espacio-tiempo que minimizan la función en cada paso, y se detiene cuando la función alcanza un valor predeterminado. Este método de optimización se puede considerar como uno de inclusiones sucesivas, que incluye tanto la selección de las posiciones de los pozos como los tiempos de monitoreo. En este trabajo se presentaron algunos ejemplos sintéticos de aplicación.
- Posteriormente Herrera *et al.*(2001) aplicaron dicha metodología en el diseño de una red de monitoreo de la calidad del agua para el acuífero Toms River en Nueva Jersey, Estados Unidos. Por otra parte en Herrera y Pinder (2005) incluyeron además de la varianza al coeficiente de variación como una medida de la incertidumbre. Como se mencionó antes, la metodología utilizada en el presente trabajo es una modificación de la propuesta por Herrera y Pinder.

Zhang et al. (2005). Diseñaron una red de monitoreo óptima de la calidad del agua subterránea combinando un filtro de Kalman y un algoritmo genético para reducir al máximo el coeficiente de variación en posiciones y tiempos establecidos. La metodología propuesta es una modificación de la de Herrera y Pinder. En este caso para diseñar redes de monitoreo de la calidad del agua: 1. Se generaron realizaciones de la conductividad hidráulica usando la técnica Latin Hypercube Sampling (LHS), suponiendo a la conductividad como un proceso aleatorio. 2. Se simula el flujo y transporte del agua subterránea para generar realizaciones de la concentración del contaminante, usando las realizaciones de la conductividad obtenidas en el paso anterior. 3. Se calcula una matriz de covarianza espaciotemporal de las concentraciones del contaminante. 4. Se usa un algoritmo genético para seleccionar posiciones y tiempos de muestreo que reduzcan el coeficiente de variación al máximo en posiciones y tiempos de estimación. Se usa un filtro de Kalman para actualizar la matriz de covarianza espacio-temporal después de que se ha tomado una muestra. 5. Se sigue con el proceso de selección hasta que se logran los valores objetivo del coeficiente de variación y se alcanza un escenario óptimo. La metodología se ejemplificó mediante un problema ejemplo en Tomas River, New Jersey (Estados Unidos).

2.2 Estado del arte en lo referente a los métodos del filtro de Kalman

El filtro de Kalman es una herramienta matemática que puede ser usada para la estimación estocástica y su nombre proviene de Rudolp E. Kalman (1960), quién en 1960 publicó un artículo describiendo una solución recursiva del problema de filtrado lineal para datos discretos. El filtro de Kalman es un conjunto de ecuaciones matemáticas que calculan recursivamente estimaciones lineales no sesgadas y con varianza mínima para el estado de un sistema utilizando datos con ruido (Jazwinski, 1970). Además, se puede emplear para actualizar la estimación en el momento en que se cuente con datos (observaciones o mediciones) nuevos de la variable, sin necesidad de utilizar datos anteriores. El término recursivo significa que el filtro recalcula la solución cada vez que un nuevo dato es incorporado en el sistema. El filtro trabaja suponiendo que el sistema puede ser descrito a través de un modelo estocástico lineal, en donde el error asociado tanto al sistema como a la

información adicional que se incorpora en el mismo tiene una distribución normal con media cero y varianza conocida. La solución es óptima porque el filtro combina toda la información observada y el conocimiento previo acerca del comportamiento del sistema para producir una estimación del estado, de tal manera que el error es minimizado estadísticamente.

2.2.1 Filtro de Kalman discreto

El objetivo del filtro de Kalman es calcular un estimador lineal, insesgado y óptimo del estado de un sistema en el tiempo k con base en la información disponible en el tiempo k-1, y actualizar dicha estimación con los datos adicionales disponibles en el tiempo t, dichas estimaciones (Welch y Bishop, 2002). Según Solera (2003), lo que hace al filtro tan interesante es precisamente su habilidad para predecir el estado de un sistema en el pasado, presente y futuro, aún cuando la naturaleza precisa del sistema modelado no se conoce.

El filtro de Kalman discreto tiene como objetivo resolver el problema general de estimar el estado $X \in \Re^n$ de un proceso en tiempo discreto, el cual es representado por una ecuación estocástica lineal en diferencias de la siguiente forma:

$$X_{k+1} = \mathbf{A}X_k + w_k$$
 Ec. 1

con una medición $Z \in \Re^m$, que esta linealmente relacionada con el estado y esta dada por:

$$Z_k = \mathbf{H}X_k + v_k$$
 Ec. 2

En las ecuaciones anteriores el subíndice indica estimador del estado en el tiempo *k* (actual) dadas las mediciones del tiempo *k*-1 (anterior). En donde X_{k+1} es el estado, A es la matriz es de dimensión n x n y relaciona al estado en el tiempo *k* con el estado en el tiempo *k*+1. La matriz H de dimensión m x n relaciona el estado en el tiempo *k* con la medición Z_k , en el

mismo tiempo. Las variables aleatorias w_k y v_k representan el error del proceso y de las mediciones (datos u observaciones) respectivamente. Se supone que son independientes entre ellas, que son ruido blanco, con distribución de probabilidad normal:

$$p(w_{k}) \cong N(0,Q_{k})$$
 Ec. 3

$$p(v_k) \cong N(0, R_k)$$
 Ec. 4

Las matrices de covarianza del error del proceso Q_k y del error de las mediciones R_k , en la forma más general del filtro pueden cambiar en el tiempo, sin embargo, por simplicidad se pueden suponer como constantes.

2.2.1.1 El proceso de estimación

Como se menciono en la sección anterior, en su forma general el filtro se basa en dos ecuaciones, una ecuación dinámica y una ecuación de medición. La ecuación dinámica tiene un error aleatorio que no tiene correlación en el tiempo. Sin embargo, Herrera (1998) mostró que cuando se usa un campo aleatorio con correlación espacial para representar a la velocidad, y se deriva, con base en éste el modelo de transporte como una ecuación con coeficientes deterministas más un error aleatorio, el error puede tener una fuerte correlación en el tiempo. Por esta razón, el método que propuso Herrera (1998) emplea lo que llamamos el filtro de Kalman estático, que únicamente emplea la ecuación de medición, incorporando el tiempo a través de la utilización de vectores espacio-temporales.

El filtro de Kalman estima el estado del sistema utilizando un control de retroalimentación, esto es, estima el proceso en algún momento en el tiempo con base en la Ec.1 y entonces obtiene una corrección, a través de una retroalimentación por medio de los datos observados, apoyándose en la ecuación de flujo y/o transporte de aguas subterráneas. Desde este punto de vista, las ecuaciones que se utilizan para derivar el filtro de Kalman se pueden dividir en dos grupos: las de predicción y las que actualizan esta predicción con los datos observados o ecuaciones de actualización. Las del primer grupo son responsables de

la proyección del estado al tiempo k, tomando como referencia el estado en el tiempo k+1, y de la actualización intermedia de la matriz de covarianza del estado. El segundo grupo de ecuaciones son responsables de la retroalimentación, es decir, incorporan nueva información dentro de la estimación anterior con lo cual se llega a una estimación mejorada del estado. Las ecuaciones que actualizan el tiempo también se pueden considerar como ecuaciones de pronóstico, mientras que las ecuaciones que incorporan nueva información final puede definirse como un algoritmo de pronóstico-corrección para resolver numerosos problemas. El filtro de Kalman funciona por medio de un mecanismo de proyección y corrección, ya que pronostica el nuevo estado y su incertidumbre y corrige la proyección con nuevo datos o mediciones.

El primer paso en la aplicación del filtro consiste en generar un pronóstico del estado hacia adelante en el tiempo tomando en cuenta toda la información disponible en ese tiempo (Jazwinski, 1970) En un segundo paso, se genera un pronóstico mejorado del estado, de tal manera que la varianza del error se minimiza estadísticamente. Las ecuaciones para el pronóstico del filtro de Kalman discreto son:

$$\hat{X}_{k+1}^{k} = \mathbf{A}\hat{X}_{k}^{k}$$
 Ec. 5

$$\mathbf{P}_{k+1}^{k} = \mathbf{A}\mathbf{P}_{k}^{k}\mathbf{A}^{T} + \mathbf{Q}_{k}$$
 Ec. 6

Y las ecuaciones de corrección del estado del filtro de Kalman discreto son:

$$K_{k+1} = \mathbf{P}_{k+1}^{k} \mathbf{H}^{T} \left(\mathbf{H} \mathbf{P}_{k+1}^{k} \mathbf{H}^{T} + \mathbf{R}_{k} \right)^{-1}$$
 Ec. 7

$$\hat{X}_{k+1}^{k+1} = \hat{X}_{k+1}^{k} + K_{k+1} \left(Z_{k+1} - \mathbf{H} \hat{X}_{k+1}^{k} \right)$$
 Ec. 8

$$\mathbf{P}_{k+1}^{k+1} = (\mathbf{I} - K_{k+1}\mathbf{H})\mathbf{P}_{k+1}^{k}$$
 Ec. 9
En donde el superíndice sigue el orden en que se procesan los vectores de las mediciones $\{Z_1, Z_2, ..., Z_k, ...\}$. Para la implementación recursiva de estas ecuaciones, se requiere de una estimación a priori del estado \hat{x}^o y una matriz de covarianza inicial del error \mathbf{P}^o . Se determina a $\hat{x}_k^i = E\{X_k | Z_1, ..., Z_l\}$ y en donde \mathbf{P}_k^i es la matriz de covarianza del error y se determina por $\mathbf{P}_k^l = E\{(X_k - \hat{X}_k^l) | Z_1, ..., Z_l\}$ donde E(X|Z)es la esperanza de x condicionada a Z.

Después de aplicar las ecuaciones de pronóstico corrección, el proceso se repite tomando como nuevo punto de partida la nueva estimación del estado así como la matriz de covarianza del error. La figura 2.1 ofrece un cuadro completo de la operación del filtro.

La primera tarea durante la corrección de la proyección del estado es el cálculo de la ganancia de Kalman, K_{k+1} (Ec. 7). Este factor de ponderación o ganancia se selecciona de tal forma que minimiza la varianza del error de la nueva estimación del estado. El siguiente paso es medir el proceso para determinar Z_{k+1} y entonces genera una nueva estimación del

estado que incorpora la nueva observación como en la ecuación (8). El paso final consiste en obtener una nueva estimación de la covarianza del error mediante la ecuación (9).

Después de cada actualización, tanto del tiempo como de la medida, el proceso es repetido tomando como punto de partida las nuevas estimaciones del estado y de la covarianza del error. Esta naturaleza recursiva es una de las características significativas del filtro de Kalman.

2.2.2 Filtro de Kalman extendido.

En el caso de que el proceso a modelar y/o la relación entre las medidas y el proceso sean no lineales, para aplicar el filtro de Kalman es necesario linealizar las funciones no lineales involucradas. El proceso de linealización del filtro (Pedroza, 2005) se realiza habitualmente a través de una aproximación con series de Taylor, y el filtro de Kalman que se obtiene se denomina entonces filtro de Kalman extendido (EKF).

Para ejemplificar la derivación del filtro de Kalman extendido utilizaremos un modelo no lineal escalar. Se tiene un modelo no lineal

$$X_{k+1} = G(X_k) + q_k$$
 Ec. 10

siendo $G(\hat{X}_k)$ una función no lineal del proceso, la variable aleatoria q_k representa el error del proceso $N(0,Q_k)$ con media cero y matriz de covarianza del error del proceso Q_k . Entonces el modelo evolucionará de acuerdo a la ecuación de aproximación:

$$\hat{X}_{k+1}^{k} = G(\hat{X}_{k}^{k}) + q_{k}^{k}$$
 Ec. 11

Restando la Ec. 10 y 11 se tiene

$$X_{k+1} - \hat{X}_{k+1}^{k} = G(X_{k}) - G(\hat{X}_{k}^{k})$$
 Ec. 12

La linealización se lleva a cabo usando una expansión en series de Taylor (serie polinómica de potencias enteras) se aproxima la función G alrededor de la estimación \hat{X}_{k}^{k} con:

$$G(X_{k}) = G(\hat{X}_{k}^{k}) + G'(\hat{X}_{k}^{k})(X_{k} - \hat{X}_{k}^{k}) + \frac{1}{2}G''(\hat{X}_{k}^{k})(X_{k} - \hat{X}_{k}^{k})^{2} + \dots \text{ Ec. } 13$$

De la ecuación resultante, se desprecian el tercer y subsecuentes momentos, quedando entonces una ecuación aproximada de la varianza del error:

$$P_{k+1}^k \approx P_k^k \left(G'\left(\hat{X}_k^k\right) \right)^2$$
 Ec. 14

Si la relación de las medidas y el estado es lineal, entonces las ecuaciones dinámicas 11 y 14 constituyen junto con la versión escalar de las ecuaciones 7, 8 y 9 el filtro de Kalman extendido para el caso de una variable de estado escalar. Es claro que ahora se tiene una ecuación aproximada para la evolución de la covarianza del error, debido a la linealización usada.

La derivación del FKE en forma matricial, se basa en los mismos principios que en el caso escalar. Si se tiene un modelo no lineal, ahora el vector de estado real en el tiempo k se calcula a partir de 13, y se calcula un pronóstico a partir de la ecuación aproximada 11. La estadística del error de predicción se describe entonces por la matriz de covarianza del error

$$P_{k+1}^k$$

El filtro de Kalman extendido se basa en la suposición de que la contribución de todos los términos de orden alto son despreciables (Evensen, 2009). Removiendo esos términos, queda una ecuación aproximada de la covarianza del error:

$$P_{k+1}^k = G_k' P_k^k G_k^T$$
 Ec. 15

donde G'_k es la matriz jacobiana u operador lineal tangente,

$$G'_{k} = \frac{\partial G(X)}{\partial X} | X_{k}$$
 Ec. 16

Si la relación entre las medidas y el estado es no lineal, se procede en forma similar y las matrices **H** en las ecuaciones 7, 8 y 9 se substituyen por el jacobiano de la función no lineal que establece la relación entre éstos.

2.2.3 Filtro de Kalman ensamblado y ensamble suavizado

Otro método secuencial de asimilación de datos, es el llamado filtro de Kalman ensamblado (FKEn). El método fue originalmente propuesto por Evensen (1994), como una alternativa estocástica o Monte Carlo, al filtro de Kalman extendido. El FKEn fue diseñado para resolver los problemas relacionados con el uso del EKF con modelos altamente no-lineales. El FKEn utiliza las ecuaciones de corrección del estado del filtro de Kalman (ecuaciones 7, 8 y 9) y substituye las ecuaciones de predicción por cálculos de ensamble determinados mediante métodos Monte Carlo. Es decir, la ecuación 5 la sustituye por la media del ensamble y la ecuación (6) la substituye por la matriz de covarianza del ensamble, calculada a través de promedios (para una descripción más detallada, consultar el capítulo 4 de esta tesis).

El FKEn ha ganado popularidad debido a su simple formulación conceptual y su relativa facilidad de implementación, además de que los requerimientos computacionales son accesibles. La mayor ventaja del FKEn, es que no es necesario hacer la linealización de las ecuaciones.

Otro método secuencial de asimilación de datos, es el llamado ensamble suavizado (ES). En el filtro de Kalman ensamblado (Evensen, 1996) y en el ensamble suavizado (Van Leeuwen y Evensen, 1996; Herrera G.S., 1998) un ensamble (un grupo de realizaciones) de la variable se usa en el proceso de predicción. El ensamble se obtiene empleando simulación Monte Carlo y se usa para calcular la media y la covarianza del error del modelo. En el esquema de pronóstico-actualización de estos métodos, se utiliza la ecuación de actualización de la

versión estándar del filtro de Kalman, con la diferencia de que la ganancia de Kalman se calcula a partir de las covarianzas de los errores proporcionadas por el ensamble de estados del modelo, y se actualiza cuando nuevas mediciones están disponibles. Una diferencia entre estos dos métodos se encuentra en la rutina de actualización, ya que el FKEn únicamente actualiza el estado actual del modelo, y el ES incluye todos los estados previos del modelo (representando la probabilidad condicional de todos los estados del modelo en el tiempo pasado dadas las mediciones del tiempo actual), dando como resultado que los estados del modelo correspondientes a tiempos previos se mejoren con la adquisición de nuevas mediciones.

Herrera en 1998 desarrolló una versión del método ES, independientemente de la de van Leeuwen y Evensen (1996), para el diseño óptimo en espacio-tiempo de redes de monitoreo de la calidad del agua subterránea. Herrera llamó a esta versión del método filtro de Kalman estático, posteriormente Nowak (2010) lo llamó filtro de Kalman ensamblado estático y en esta tesis nos referimos a ella como ensamble suavizado de Herrera (ESH). En cambio a la versión del ES propuesta por van Leeuwen y Evensen le llamaremos ensamble suavizado de van Leeuwen y Evensen (ESLE).

2.2.4 Estado del arte en lo referente a la aplicación del filtro de Kalman en agua subterránea.

Desde que Kalman en 1960 describió su técnica de filtración (asimilación), se ha aplicado a muchos fenómenos y sistemas, como a la determinación de órbitas en navegación y en otros usos aeroespaciales, la predicción del tiempo en meteorología, problemas de circulación del océano, en la geomecánica para el análisis de la seguridad en las estructuras y en las cimentaciones del suelo. Una visión general de las diversas aplicaciones del filtro de Kalman se puede obtener de Sorenson (1985).

La diversidad de aplicaciones del filtro de Kalman refleja su naturaleza genérica. El punto de vista recursivo lo hace un método dinámico que permite el estudio de cambios en la respuesta del modelo con el tiempo, ya que el estado del sistema, es actualizado en cada paso de tiempo, con la adquisición de nuevas observaciones. Una revisión de las dificultades

asociadas al uso del filtro de Kalman con los modelos del flujo del agua subterránea se presenta en Eigbe *et al.* (1998). Los autores mencionan que anteriormente existían pocos usos de la teoría de asimilación para modelación del flujo del agua subterránea y se podía atribuir a dos razones: 1) parecía existir mucho escepticismo en la modelación del agua subterránea, debido a que una gran parte de los geohidrólogos consideraban que la teoría de asimilación era solamente útil para los problemas de la estimación del estado en tiempo real, y debido a que la estimación de los problemas en tiempo real no son frecuentes en geohidrología, consideraban que la teoría de filtrado, quizás tenía poco o nada que aportar en este campo y 2) en aplicaciones de modelación de agua subterránea ha existido el problema de dimensionalidad, por lo cual se consideraba computacionalmente difícil la aplicación del filtro en tales situaciones. Una alta dimensionalidad del estado y del parámetro se presenta debido a la heterogeneidad espacial en los modelos de flujo de agua subterránea.

De la revisión del estado del arte en lo referente a la aplicación de la teoría de filtro de Kalman realizada en este trabajo de tesis, se ha encontrado que actualmente es de gran aplicación en el campo del agua subterránea. A continuación se describen algunos de los trabajos más importantes para la presente investigación de la implementación del filtro de Kalman en aplicaciones de agua subterránea.

2.2.4.1 Aplicaciones en problemas de modelación del agua subterránea

Aunque algunos problemas del flujo de agua subterránea son no lineales, los puntos de vista más actuales de modelación se basan generalmente en aproximaciones lineales. Por ejemplo los modelos numéricos del flujo de agua subterránea en la zona saturada se pueden expresar generalmente en la forma de ecuación del estado del sistema (Ec. 1), junto con una ecuación de la observación (Ec. 2). En estos contextos, el estado del sistema del agua subterránea usualmente sería la carga piezométrica, mientras que los parámetros del sistema se refieren a las características hidrogeológicas del acuífero: transmisividad, conductividad hidráulica, almacenamiento, porosidad, etc.

De acuerdo con Eigbe *et al.* (1998), el filtro proporciona un marco elegante para combinar y utilizar ambas informaciones, la teórica y la observada sobre el comportamiento de un sistema, bajo incertidumbre. Dependiendo de lo que uno supone o conoce, el filtro puede modificarse para trabajar sobre varios problemas:

- Estimación del estado (en posiciones y tiempos observados) y en reconstrucción (en posiciones y tiempos no observados), que popularmente se conoce como "asimilación de datos", típicamente en el contexto de reconstrucción de los campos espaciales del flujo y de la pluma de algún contaminante.
- Estimación de parámetros, donde puede ser especialmente importante cuantificar la incertidumbre adicionada al estado debido a la incertidumbre en los parámetros (para los propósitos de calcular la propagación de los errores de predicción).
- Estimación combinada estado-parámetro.
- Estimación de la entrada, (como la estimación del parámetro) referida también como un problema inverso.
- Estimación de las propiedades de la varianza-covarianza del ruido del sistema y mediciones con ruido, conocido como asimilación adaptativa.
- En el diseño de redes de la observación (o estrategias) para el sistema de monitoreo y reduciendo el estado y/o incertidumbre del parámetro.
- Análisis (teórico) de la confiabilidad del parámetro.

A pesar de que la aplicación potencial de la teoría de asimilación en modelación del flujo del agua subterránea había sido ya reconocida por McLaughlin (1976) y Bras (1978), ésta se había aplicado poco, sin embargo, en la última década está siendo muy aplicada en el estudio del flujo del agua subterránea.

2.2.4.2 Filtrado lineal

En los párrafos siguientes se describen algunas aplicaciones del filtrado lineal para a) el diseño óptimo de redes de monitoreo de agua subterránea, b) para la estimación de parámetros y estado del agua subterránea, c) para la estimación del estado del agua subterránea y d) para la estimación de las características del ruido.

Estimación del estado.

A continuación se describen los trabajos centrados en la estimación del estado que han aplicado el filtrado lineal.

- Hirano (1985) aplicó el filtro de Kalman para la estimación del estado en un modelo numérico del flujo de agua subterránea con un parámetro distribuido. Su uso fue simplista, no se dio ninguna consideración al problema de la estimación de la covarianza del ruido del sistema.
- Van Geer y te Stroet (1990) incorporaron un marco de asimilación de datos a MODFLOW (McDonald y Harbaugh (1984)). En su trabajo las estimaciones iniciales de los valores de los parámetros del acuífero se actualizaron por un procedimiento "off-line", que implica minimizar la diferencia entre las mediciones de carga reales y las predichas mediante el marco de asimilación MODFLOW-Kalman, esto es, a través de la minimización de las innovaciones del filtro o residuales de carga. El principal punto a observar sobre un procedimiento "off-line" es que la estimación de los parámetros no se logra con el filtro por sí mismo; el filtro se utiliza para generar los errores de la predicción de un paso a otro que aparecen en una función objetivo, el extremo del cual se debe entonces encontrar con algún otro algoritmo.
- Van Geer et al. (1990) también han motivado la idea de usar un filtro para la estimación del estado en ausencia del comportamiento dinámico significativo. Si la caracterización de un sistema de agua subterránea reacciona rápidamente al intervalo de muestreo de las observaciones, entonces el comportamiento del sistema se puede describir con un filtro estacionario en el sentido de que los estados se pueden obtener de las ecuaciones en estado estacionario. Este punto de vista ahorra cerca de 98% del tiempo del CPU, comparado con el uso del filtro convencional para el mismo problema. Van Geer et al. (1990) investigaron la aplicabilidad del filtro para sistemas de agua subterránea que reaccionan relativamente rápido, obteniendo buenos resultados. Es importante mencionar que se podrían obtener resultados

incorrectos si se aplicara tal formulación del filtro a sistemas que responden en forma relativamente lenta. La desventaja principal del concepto de filtrado estacionario propuesto por Van Geer *et al.* (1990) es que para los sistemas que reaccionan rápidamente (a los cuales se aplica la técnica), un modelo dinámico y una técnica de estimación on-line (dinámica) tal como el filtro de Kalman no es realmente necesario para reconstruir el estado de tales sistemas. Un modelo de estado estacionario (tiempo-invariante) podría ser suficiente. La noción de un filtro de Kalman estacionario parece hasta este punto ser de poca importancia en modelación del flujo de agua subterránea, a menos que la propagación de características en espacio (en comparación con la de tiempo) sea significativa. Hay más cuestiones apremiantes para resolverse. Éstas incluyen la estimación inicial de la covarianza del ruido del sistema, problemas de gran dimensionalidad en estados y parámetro, que da lugar a grandes necesidades de almacenamiento (en el CPU), en aplicaciones con los modelos numéricos y distribución-parámetros.

 Graham y Tankersley (1993) emplearon un modelo espacial empírico de series de tiempo dentro del filtro, con el objetivo de realizar pronósticos a corto plazo de carga hidráulica dentro del filtro. El modelo fue desarrollado usando expedientes de datos históricos de largo plazo

Diseño óptimo de redes de monitoreo de aguas subterráneas

A continuación se describen los trabajos centrados en el diseño óptimo de redes de monitoreo del agua subterránea que han aplicado el filtrado lineal.

 El trabajo de Van Geer (1982) se centró en el diseño óptimo de redes de monitoreo del agua subterránea usando los filtros de Kalman. El autor basó su trabajo en un modelo unidimensional simple del flujo de agua subterránea de diferencias finitas con el objetivo de encontrar un esquema de muestreo que redujera al mínimo la estimación del estado de la varianza del error para minimizar el costo de una red dada. El trabajo de Van Geer (1982), también destaca las complicaciones de variabilidad espacial de los parámetros del modelo que se presentan en problemas reales del flujo del agua subterránea. Yangxiao *et al.* (1991), revisaron los problemas de Van Geer (1982), e integran los algoritmos de asimilación y un modelo de flujo de agua subterránea determinista en el marco de MODFLOW (McDonald & Harbaugh, 1984). Con ello mejora y cuantifica la incertidumbre de la simulación numérica de agua subterránea, además proporciona una relación dinámica entre la varianza del error de estimación y de la estrategia de medición. Esta relación se aplica a la ciudad de Zhengzhou y Spannenburg para el análisis y diseño de redes de monitoreo para los niveles de aguas subterránea. En ambos casos, la red se diseña de tal manera que la densidad de la red se minimiza bajo la restricción de los valores propuestos para las desviaciones estándar de los errores de estimación. Se analizan varias alternativas de la red y la mejor alternativa se selecciona a base de prueba y error. La ciudad de Zhengzhou, y el case de Spannenburg se comparan y la diferencia entre ellos se analiza mediante un ejemplo hipotético. Los resultados indican que la densidad de la red depende de las características de los sistemas geohidrológicos.

Estimación conjunta de parámetros y estado

A continuación se describen los trabajos centrados en la estimación de parámetros del agua subterránea que han aplicado el filtrado lineal.

 Van Geer y Van Der Kloet (1985) presentaron dos esquemas lineales del filtro, para la estimación del parámetro en problemas del flujo del agua subterránea, llamándolo entonces como el método de estimación del parámetro y el método de la estimación del estado-parámetro. Ambos algoritmos fueron aplicados con éxito a un problema hipotético, unidimensional, de un acuífero confinado con supuesta homogeneidad del parámetro. Sin embargo Eigbe (1998) menciona que estos algoritmos tienen serias limitaciones para la extensión a los sistemas heterogéneos del agua subterránea debido a que en la naturaleza los parámetros se encuentran distribuidos.

Estimación de las características del ruido

A continuación se describen los trabajos centrados en la estimación de las características del ruido.

- Van Geer *et al.* (1991). La especificación de los valores numéricos para el sistema y
 para las matrices de covarianza de mediciones de ruido es notoriamente difícil, en
 detalle, para la metodología de Van Geer *et al.* (1990). En que el trabajo adicional con
 el marco integrado del filtro de MODFLOW-Kalman, Van Geer *et al.* (1991) trataron el
 problema de estimación de la covarianza del ruido del sistema del modelo por medio
 de un filtro de Kalman adaptado (Mehra, 1972).
- te Stroet (1995). Los desarrollos de Van Geer *et al.* (1990) han culminado en la tesis de te Stroet (1995), quién discute que una estimación apropiada de los parámetros del modelo estaría significativamente comprometida si las matrices de la covarianza del ruido se suponen insignificantes o especificadas como inexactas. El filtro se empleó para estimar las propiedades de la covarianza del ruido, de las cuales fue evidente (en este caso) que la mayor parte de la incertidumbre en las ecuaciones del sistema estado se derivan del conocimiento imperfecto de algunas de las entradas (específicamente elementos del sistema del agua superficial conectados con el sistema de agua subterránea). Los parámetros del modelo se estimaron en un paso subsecuente usando un punto de vista indirecto inverso en el cual, siguiendo el trabajo original de McLaughlin (1979), la función objetivo es dependiente de los residuales generados por el modelo ajustado dentro de un filtro.

2.2.4.3 Filtrado no lineal

La principal diferencia entre las técnicas basadas en la formulación lineal y la formulación linealizada del filtro, usualmente se refieren al filtro de Kalman extendido (FKE), al filtro de Kalman ensamblado (FKEn) y al ensamble suavizado (ES). Cuando el proceso a modelar y/o las medidas relacionadas con ese proceso son no lineales, es necesario linealizar ese proceso para poder aplicar las ecuaciones del filtro de Kalman. En los siguientes párrafos se

describe el estado del arte en lo referente al filtrado no lineal en aplicaciones relacionadas con el agua subterránea.

Estimación de parámetros

A continuación se describen los trabajos centrados en la estimación de parámetros que han aplicado el filtrado no lineal.

- Chander *et al.* (1981) presentaron un filtro de Kalman extendido para la estimación de parámetros en pruebas de bombeo en acuíferos semiconfinados homogéneos, considerando y sin considerar el almacenamiento del acuífero. Los parámetros a estimar fueron la transmisividad, el coeficiente de almacenamiento y el coeficiente de goteo, en el primer caso; y adicionalmente un parámetro asociado al efecto del almacenamiento del acuitardo, en el segundo caso. Las ecuaciones de estado del sistema empleadas se obtuvieron de las soluciones de los modelos de flujo radial de agua subterránea en acuíferos semiconfinados de Hantush y Jacob (1955) y de Neuman y Witherspoon (1969), respectivamente.
- Ferraresi *et al.*(1996) emplearon un modelo lineal de flujo de Darcy para estimar las conductividades en un caso de estudio real. Los autores derivaron el sistema lineal para resolverlo usando la formulación del filtro de Kalman.
- Eppstein y Dougherty en (1996) usaron una modificación del filtro de Kalman extendido simplificando la actualización de la covarianza. Emplearon una técnica para crear zonas en el campo de la conductividad hidráulica usando un algoritmo de racimos (clustering). Este enfoque convierte al problema de estimación de parámetros normalmente mal-planteado en un problema bien-planteado, mediante la reducción del número de variables desconocidas. Sin embargo, los autores no aplicaron su técnica a un caso de estudio real.
- Drécourt *et al.* (2006) presentaron un punto de vista novedoso para la formulación del filtro de Kalman, usando un marco automático de calibración para la estimación de las matrices de la covarianza. La calibración consiste en dos pasos secuenciales: (1)

La calibración automática de un conjunto de parámetros de la covarianza para optimizar el comportamiento del sistema y (2) el ajuste del error del modelo y la varianza del error de la observación para proporcionar un análisis confiable de la incertidumbre en los datos en vez de valores ad-hoc de la covarianza. El método se aplicó en un experimento doble con un modelo de agua subterránea y un filtro de Kalman con ruido de color. El filtro de Kalman resultante demostró ser eficiente en corregir el error dinámico y es insesgado sobre todo el dominio estudiado. El análisis de la incertidumbre proporciona una estimación confiable del error en la vecindad de los puntos de asimilación pero la simplicidad de los modelos de covarianza condujo a la subestimación de los errores lejos de puntos de la asimilación.

Estimación del estado

A continuación se describen los trabajos centrados en la estimación del estado que han aplicado el filtrado no lineal.

- Cahill *et al.*(1999) usaron el filtro de Kalman extendido combinado con un modelo numérico para estimar las conductividades hidráulicas en un campo experimental.
- Bierkens *et al.*(2001) usaron un modelo geoestadístico en lugar de un modelo numérico de la carga hidráulica, combinado con un filtro de Kalman ensamblado.

Estimación conjunta de parámetros y estado

A continuación se describen los trabajos centrados en la estimación del estado-parámetro que han aplicado el filtrado no lineal.

Schmidtke *et al.*(1982) emplearon el filtro de Kalman extendido (FKE) para la estimación conjunta en-línea de estado-parámetro en un acuífero no confinado sujeto a recarga artificial, con las ecuaciones del estado basadas en el modelo de Hantush (1967). La principal debilidad en este trabajo, es que aunque los modelos analíticos y

semi-analíticos del flujo del agua subterránea se satisfacen bien para el uso del FKE, los problemas del flujo deben tener características geométricas regulares, tales como límites verticales lineales, capas y fracturas igualmente espaciadas. Tales simplificaciones geométricas no reflejan la heterogeneidad en los sistemas reales de agua subterránea; por lo tanto hay una necesidad de los modelos numéricos de distribución de parámetro, que se utilizan más extensamente.

- Wilson et al. (1978) emplearon el FKE con un modelo numérico del flujo de agua subterránea (modelo en dos dimensiones y de diferencias finitas) con parámetros distribuidos. Una seria desventaja de su trabajo es la suposición de que el modelo del flujo de agua subterránea está libre de ruido, es decir, la varianza del ruido del sistema es igual a cero, que obviamente no se justifica en la práctica. Sin embargo, su estudio enfocó bien el problema de la alta dimensionalidad al usar el FKE con los modelos del flujo de agua subterránea de parámetros distribuidos. La gran dimensionalidad en estados y parámetros asociada con la distribución de los parámetros en los problemas de flujo de agua subterránea introducen en la práctica grandes necesidades de cómputo en el algoritmo del FKE, puesto que la matriz de la covarianza propagada en estos casos contiene no solamente términos de la covarianza del estado-estado, sino también las covarianza-cruzadas del estadoparámetro y la covarianza del parámetro-parámetro, que aparecen como submatrices en la matriz general de la covarianza. Una desventaja en poner el FKE en ejecución con los modelos numéricos del flujo de agua subterránea de parámetros distribuidos está en el cómputo de los coeficientes de la sensibilidad de la matriz Jacobiana asociada a la ecuación del estado del sistema, que se utiliza para propagar la covarianza y la covarianza-cruzada de estados y de parámetros.
- Graham y McLaughlin (1989b) emplearon el FKE en un problema de estimación conjunta del estado-parámetro. Lo aplicaron a un modelo de advección-dispersión con parámetros distribuidos para el transporte del soluto en la sub-superficie. Los autores evitaron completamente la necesidad de un Jacobiano en la implementación de su algoritmo, ya que derivaron un sistema de ecuaciones diferenciales parciales que describían la propagación de la covarianza y de la covarianza-cruzada del estado (concentración) y de los parámetros (velocidad, carga piezométrica y log

conductividad) aplicando técnicas de perturbaciones pequeñas al modelo de transporte. Este punto de vista es posible que dé lugar a requisitos de cómputo imprácticos cuando se aplique a problemas a escala de campo, no solamente en la fase de la propagación del algoritmo, en donde un sistema de ecuaciones diferenciales parciales se tiene que resolver numéricamente en cada paso de tiempo, pero también en la fase de la actualización del algoritmo, donde las variables predichas se condicionan con valores observados del estado y de parámetro con el período de la simulación.

Aplicaciones del filtro de Kalman ensamblado

A continuación describimos algunas de las aplicaciones más notables del filtro de Kalman ensamblado.

Wu y Nan (2010) mencionan que el FKEn es un método secuencial de asimilación de datos ampliamente utilizado y que se basa en una aproximación Monte Carlo. Puede actualizar los parámetros y las variables del modelo incluidas en el vector del estado, empleando varios tipos de observaciones dinámicas seriales cuando las observaciones o los datos llegan a estar disponibles. Es una herramienta eficiente debido a su aplicabilidad a los problemas no lineales y de grandes dimensiones, es de fácil implementación y con un costo computacional relativamente bajo. El FKEn ha sido útil en muchos problemas aplicados, como oceanografía, meteorología, ingeniería del petróleo, hidrología etc. La técnica de asimilación de datos en las ciencias atmosféricas se emplea para reducir el ajuste entre las observaciones y las predicciones del modelo, adaptando las condiciones iniciales.(Kalnay, 2003). Hasta hace pocos años, comenzó a ser utilizado en hidrogeología para asimilar las mediciones para la estimación de parámetros de modelos de agua subterránea (Nan & Wu, 2010).

La asimilación de datos normalmente se aplica para actualizar el vector estado en aplicaciones en tiempo real. Sin embargo, en hidrología subterránea una parte importante de la estimación del error se asocia con los valores incorrectos de los parámetros. Estos valores incorrectos están incluso dominados por una fuente de error. Franssen *et al.*(2008)

mencionan que actualmente un limitado número de aplicaciones de asimilación de datos se combina con la estimación de parámetros, sin embargo, en los últimos años se han incrementado el número de estos trabajos. Generalmente la estimación de parámetros con el FKEn se realiza aumentando el vector estado, para incluir la incertidumbre de los parámetros. Esto significa que la matriz de covarianza debe ser aumentada, con la covarianza entre los parámetros desconocidos y cada uno de los estados.

Para flujo en porosidad media, el FKEn se ha usado para estimar conjuntamente estado (carga hidráulica o presiones) y parámetros como la conductividad hidráulica, iniciando con el trabajo de Naevdal *et al.* (2005).

En estos puntos de vista el estado y los parámetros son actualizados conjuntamente y no iterativamente.

- Chen y Zhang (2006) utilizaron el FKEn para asimilar mediciones de la carga hidráulica y de la conductividad hidráulica en modelos sintéticos de 2D y 3D. Obtuvieron una estimación apropiada del campo de la conductividad hidráulica, demostrando la eficacia del filtro de Kalman ensamblado en la estimación dinámica de parámetros del agua subterránea.
- Drécourt *et al.*(2006) aplicaron el FKEn en un problema en dos dimensiones de flujo de aguas subterráneas, pero no actualizaron las transmisividades. El sesgo resultante se maneja con un filtro coloreado de Kalman (colored noise Kalman filter).
- Liu *et al.*(2008) implementaron el filtro de Kalman ensamblado para realizar la estimación de parámetros de un modelo de transporte. Estimaron la conductividad hidráulica, integrando mediciones reales de la carga hidráulica y de la concentración. Lo aplicaron una investigación de los procesos del flujo y transporte en un experimento de macro-dispersión en Columbus, los E.E.U.U.

Otros autores proponen el uso de un método iterativo para actualizar el estado y los parámetros conjuntamente.

- Wen y Chen (2006) aseguran que la actualización conjunta del estado-parámetros introduce una importante inconsistencia, especialmente para formaciones fuertemente heterogéneas. Los autores proponen una opción de volver a correr el método para resolver estos problemas. La actualización de las permeabilidades después de un paso de análisis se usa nuevamente como entrada para re-calcular el último paso de tiempo y obtener la solución correcta de presión.
- Moradkhani *et al.*(2005) maneja un enfoque dual de actualización conjunta del estado y parámetros. Primero se aplica el filtro de Kalman ensamblado para actualizar los parámetros. En un segundo paso, los parámetros actualizados se usan nuevamente para hacer el ensamble del filtro de Kalman con el objetivo de actualizar finalmente los estados. La aplicación se empleó en el pronóstico de descarga de un río.
- Gu y Oliver (2007) mostraron que un filtro iterativo de Kalman ensamblado para un problema de flujo multifase, da mejores resultados que un filtro no iterativo. Los autores reinician las simulaciones desde t=0 hacia adelante y después actualizan las permeabilidades. Este punto de vista se conoce como filtro de Kalman ensamblado reiniciado (restart FKEn).
- Franssen y Kinzelbach (2008) estudiaron el funcionamiento de FKEn en un problema de flujo de agua subterránea sintético con diferentes conjuntos de valores transmisividad y gastos de recarga. Los autores actualizaron el estado y parámetros de forma conjunta. y compararon un método iterativo con uno no iterativo El modelo se actualiza en tiempo real asimilando datos de carga hidráulica con el filtro de Kalman ensamblado. Los autores emplearon un factor de amortiguamiento para reducir la perturbación del log transmisividad, ya que aseguran que este factor reduce los problemas asociados con la relación no lineal entre las cargas hidráulicas y transmisividades. El ensamble actualizado del vector estado y los parámetros se substituyen en la ecuación de flujo de agua subterránea, la cual se integra hacia adelante hasta el siguiente punto en el tiempo en que los datos de las mediciones serán asimilados. En el punto de vista iterativo, el FKEn actualiza estados y parámetros en dos pasos, primero los parámetros son actualizados y en un segundo paso el problema se resuelve nuevamente y actualiza el estado. En la primera parte

los parámetros se actualizan con la ayuda de las cargas hidráulicas. El FKEn se probó en un caso basado en el acuífero Limmat ubicado cerca de Suiza, para la modelación de agua subterránea en tiempo real. Los autores encontraron que de acuerdo a sus pruebas el FKEn reduce fuertemente el error medio absoluto de la carga hidráulica y la log transmisividad. Concluyeron que a) las diferencias entre el método iterativo, no iterativo y el método reiniciado (para campos de transmisividad moderadamente y fuertemente heterogéneos) son insignificantes, b) para problemas de flujo de agua subterránea incluso en casos con fuerte no linealidad estadística, un punto de vista iterativo no es superior al punto de vista no iterativo, c) el parámetro de amortiguamiento puede reducir fuertemente el problema de mal comportamiento del filtro (inbreading problem) y d) el filtro de Kalman ensamblado es muy prometedor para modelación de flujo de agua subterránea en tiempo real.

 Sun et al. (2009a) compararon cuatro derivaciones deterministas del FKEn sin perturbaciones (artificiales) de las observaciones en los experimentos de asimilación de un modelo simple de agua subterránea. Encontraron que el filtro determinista de Kalman ensamblado (por sus siglas en ingles DES) logra mejores resultados en un tamaño de ensamble relativamente pequeño.

Aplicaciones del ensamble suavizado

A continuación describimos algunas de las aplicaciones más notables del ensamble suavizado.

- En el artículo en el que se introdujo el ESLE (van Leeuwen & Evensen, 1996) éste se probó con un modelo no lineal cuasigeotrópico de dos capas para remolinosoceanográficos en donde las fuentes de incertidumbre consideradas en el modelo fueron las condiciones iniciales, errores del modelo y los errores de medición.
- Herrera (1998) propuso una metodología para el diseño óptimo espacio-temporal de redes de monitoreo de la calidad del agua subterránea. El método combina un filtro de Kalman estático con un modelo de transporte estocástico con velocidades

aleatorias para predecir la varianza del error de las concentraciones estimadas. En la aplicación que Herrera desarrolló el problema es lineal, sin embargo debido a que en este problema la conductividad hidráulica se considera aleatoria, se emplea el método de ensamble suavizado. Una de las entradas para el filtro de Kalman es la matriz de covarianza espacio-temporal de la concentración del contaminante en todas las posiciones y tiempo de muestreo posibles. Para optimizar la red, se busca determinar dónde y cuándo muestrear para minimizar una función de la varianza del error de la concentración estimada (obtenida del filtro de Kalman) en las posiciones y tiempos de interés. La determinación de un plan de muestreo óptimo se obtiene a través de un procedimiento secuencial que selecciona los puntos de muestreo en espacio-tiempo que minimizan la función en cada paso, y se detiene cuando la función alcanza un valor predeterminado.

 Posteriormente Herrera *et al.*(2001) aplicaron dicha metodología en el diseño de una red de monitoreo de la calidad del agua para el acuífero Toms River en Nueva Jersey, Estados Unidos. En Herrera y Pinder (2005) incluyeron además de la varianza al coeficiente de variación como una medida de la incertidumbre. Como se mencionó antes, la metodología utilizada en el presente trabajo es una modificación de la propuesta por Herrera y Pinder.

Como se mencionó antes, Herrera en 1998 desarrolló el método ESH para el diseño óptimo en espacio-tiempo de redes de monitoreo de la calidad del agua subterránea. A diferencia de van Leeuwen y Evensen (1996), las fuentes de incertidumbre consideradas fueron las condiciones de frontera y dos parámetros: la velocidad y la dispersión. El ESH se probó con buenos resultados en la estimación de la concentración de un contaminante en Herrera (1998), Herrera et al. (2001), Zhang et al.(2005) y Herrera y Pinder (2005). Posteriormente Briseño y Herrera lo probaron para hacer la estimación conjunta de 1) de la carga hidráulica y del logaritmo natural de la concentración de contaminante y de Ln K (Briseño & Herrera, 2007) y 2) de la carga hidráulica, de la concentración de contaminante y de Ln K (Briseño & Herrera, 2011). Dokou y Pinder (2009) utilizaron el ESH para definir una estrategia óptima de búsqueda que identifica una fuente de DNAPL. Nowak (2010) utiliza el ESH para estimar algunos parámetros del semivariograma del logaritmo de la conductividad hidráulica.

El ESLE se aplicó por primera vez a problemas de estimación de parámetros de agua subterránea, por Bailey y Baù (2010). Utilizaron el ESLE para la asimilación de la carga hidráulica y datos del volumen de flujo de retorno del agua subterránea para estimar la conductividad hidráulica.

Capítulo 3. Método para el diseño óptimo de redes de monitoreo de calidad y de los niveles de agua subterránea.

3.1 Método para el diseño óptimo de redes de monitoreo de calidad del agua subterránea de Herrera y Pinder

El diseño de redes de monitoreo del agua subterránea consiste en establecer un programa de supervisión continua en pozos de muestreo para medir niveles del agua subterránea y tomar muestras para el análisis de variables físicas, químicas y biológicas previamente establecidas. Este tipo de redes de monitoreo piezométricas y de calidad del agua subterránea, son indispensables para conocer el comportamiento de un acuífero así como de sus tendencias de calidad del agua. Esta información es básica para lograr una gestión eficaz y controlar los impactos ambientales negativos de la extracción del agua subterránea y de las cargas de contaminantes. Sin embargo, se requiere de un alto costo para medir los niveles del agua subterránea, recabar las muestras, y llevar a cabo el análisis de los parámetros de la calidad del agua subterránea en todos los pozos de monitoreo de un acuífero o de alguna zona contaminada. Es por ello que se requiere de un diseño óptimo de redes de monitoreo, con las cuales se optimice la selección de los pozos y los tiempos de muestreo (en dónde, cuándo y cuántos pozos muestrear), los cuales proporcionen la mayor información para lograr estimaciones confiables de los parámetros de calidad y de los niveles del agua subterránea. Como respuesta a estas necesidades, Herrera (1998) propuso un método para el diseño óptimo de redes de monitoreo que involucra en el diseño el espacio y el tiempo de forma combinada. Este método tiene varias ventajas, por un lado permite seleccionar tanto posiciones como tiempos de monitoreo en forma óptima, con la información obtenida de la red de monitoreo permite hacer estimaciones en espacio y el tiempo, y utiliza un modelo de flujo y transporte, el cuál sintetiza el conocimiento de las características del acuífero, de la dinámica del flujo subterráneo y de la problemática de calidad del agua subterránea que se tenga. Este método se probó en un caso de estudio que se reporta en Herrera *et al.* (2001) y otros ejemplos de aplicación se presentaron en Herrera y Pinder (2005). Nos referiremos a este método como el método de Herrera y Pinder.

El método de Herrera y Pinder se propuso originalmente para diseñar redes de monitoreo de calidad del agua y una modificación del mismo se prueba en este trabajo por primera vez para redes de monitoreo de los niveles del agua subterránea.

3.1.1 Metodología de diseño óptimo espacio-temporal de una red de monitoreo de calidad del agua

El método propuesto originalmente por Herrera (1998) para el diseño óptimo de redes de monitoreo de calidad del agua subterránea, es adecuado para optimizar redes de monitoreo de largo plazo, en casos en los que el acuífero ha sido investigado ampliamente y que cuenta con un modelo de flujo y transporte para el mismo. La metodología se divide en dos procedimientos: 1) uno que se usa para estimar la concentración (en lo siguiente c) y la incertidumbre del error de esta estimación cuando se tienen datos de c en diferentes pozos y tiempos de monitoreo, y 2) un método que escoge las posiciones de los pozos y los tiempos de muestreo que minimicen la predicción de la incertidumbre de c obtenida en el paso 1, con los cuales se definen la red de monitoreo y su programa de muestreo. Para una descripción más detallada del método véase el trabajo de Herrera (1998). En los párrafos siguientes se describe de forma detallada la adaptación de la metodología de Herrera (1998) para el diseño de redes de monitoreo de los niveles del agua subterránea, que constituye una aportación de esta tesis doctoral.

3.1.2 GWQ-Monitor

El software GWQ-Monitor fue desarrollado por Herrera para el diseño costo-efectivo de redes de monitoreo de calidad del agua subterránea, en las que la redundancia espacial y temporal combinada es considerada por el uso de un modelo de transporte estocástico, en donde la velocidad es un campo aleatorio espacial correlacionado. El software se desarrolló en el lenguaje de programación Fortran, y se requiere de diversos programas para obtener la red de monitoreo.

En la figura 3.1 se muestra el diagrama de los programas con los cuales trabaja el GWQMonitor para obtener la red de monitoreo y a continuación se describen los principales programas y librerías para generar dichas redes.

- RandTS2. Es usado para crear series de tiempo aleatorias para ser asociadas con las fuentes aleatorias de c. GWQMonitor usa estas series, para generar fuentes aleatorias de la concentración (opcional) de los valores originales del modelo tridimensional de elemento finito de flujo y transporte de contaminantes conocido como Princeton Transport Code (PTC, por sus siglas en ingles) (Babu D., Pinder, Niemi, Ahlfeld, & Stothooff, 1993),
- SGSIM. Es un programa para generar las simulaciones secuenciales gaussianas y pertenece a las librerías del GSLIB (Deutsch & Journel, 1998). Es usado para crear las realizaciones del campo aleatorio de conductividad. Las realizaciones son guardadas en un archivo que el GWQMonitor usa como datos de entrada. Una descripción más detallada del método de simulación secuencial gaussiana y de la aplicación del programa SGSIM, se presenta en el Anexo A.
- La interfaz gráfica conocida como ArgusONE, emplea los programas GWQMonitor.exe y PTC.exe se usan para configurar el modelo original de PTC y el simulador estocástico GWQMonitor.exe. La interfaz gráfica del GWQMonitor no controla la generación del campo aleatorio conductividad hidráulica. Esta interfaz configura el simulador estocástico, GWQMnonitor.exe.

Es importante mencionar que el programa original GWQMonitor se diseñó inicialmente para diseñar redes de monitoreo de calidad del agua pero durante el desarrollo de esta tesis se adaptó y probo para diseñar redes de monitoreo de los niveles del agua subterránea.

3.2 Adaptación del método de Herrera y Pinder para el diseño óptimo de redes de niveles del agua subterránea

El método de Herrera y Pinder que se describió en la primera parte de este capítulo, se propuso originalmente para diseñar redes de monitoreo de calidad del agua y una modificación del mismo se prueba en este trabajo por primera vez para redes de monitoreo de los niveles del agua subterránea. La formulación del método se presenta para redes de monitoreo espacio-temporales y la aplicación se realiza en un caso de estudio sintético en el que la red de monitoreo se diseña para un solo tiempo.

3.2.2 Metodología de diseño óptimo espacio-temporal de una red de monitoreo piezométrica

El método propuesto originalmente por Herrera (1998) para el diseño óptimo de redes de monitoreo de calidad del agua subterránea, se adaptó y se probó en este trabajo para la optimización de redes de monitoreo de los niveles del agua subterránea. El método que se propone es adecuado para optimizar redes de monitoreo de largo plazo, en casos en los que el acuífero ha sido investigado ampliamente y se cuenta con un modelo de flujo para el mismo. La metodología se divide en dos procedimientos: 1) uno que se usa para estimar la carga hidráulica (en lo siguiente h) y la incertidumbre del error de esta estimación cuando se tienen datos de h en diferentes pozos y tiempos de monitoreo, y 2) un método que escoge las posiciones de los pozos y los tiempos de muestreo que minimicen la predicción de la incertidumbre de h obtenida en el paso 1, con los cuales se definen la red de monitoreo y su programa de muestreo. En los párrafos siguientes se describen con mayor detalle las dos etapas del método.

• Estimación de la carga hidráulica

Esta parte del método emplea un filtro de Kalman y un modelo estocástico de flujo para obtener una estimación de h y la incertidumbre que ésta tendría, si datos de h de muestras tomadas en un conjunto de posiciones en diferentes tiempos se usaran para estimar la incertidumbre de la carga hidráulica. Usando un ensamble de conductividad hidráulica, primero se emplea el modelo estocástico de flujo para calcular una estimación inicial (o a priori) de h en diferentes posiciones y tiempos, así como su matriz de covarianza espacio-temporal. El modelo estocástico tiene la ventaja de que sintetiza el conocimiento que se tiene del acuífero y a la vez permite reconocer áreas con diferentes niveles de incertidumbre (a través de la varianza). Posteriormente, con el filtro de Kalman se actualizan tanto la estimación inicial como la matriz de covarianza, al incluir los datos de piezométrica disponibles y las posiciones de los pozos correspondientes. Es importante recalcar que para obtener la incertidumbre de la estimación no es necesario conocer el valor de los datos, sino únicamente las posiciones de las que se obtendrían los mismos, en este sentido es posible *predecir* esta incertidumbre, de manera previa a la medición del nivel piezométrico.

• Selección óptima de las posiciones de los pozos y los tiempos de muestreo.

Una función de la varianza del error de la estimación, calculada con el procedimiento 1, se utiliza como criterio para escoger los pozos de muestreo y los tiempos de muestreo en cada pozo. La función que se utiliza depende de los objetivos del diseño. Para minimizar la función se pueden utilizar diferentes métodos de optimización: hasta ahora se ha usado un método secuencial que escoge los puntos espaciotemporales que la minimizan en cada paso y se detiene cuando el usuario lo decide.

3.2.3 Modelo estocástico

La ecuación de flujo se emplea para describir la evolución de h:

$$\nabla \cdot (K \cdot \nabla h) - Ss \frac{\partial h}{\partial t} + Q = 0$$
 Ec. 17

en donde *h* es la carga hidráulica [*L*], κ es la conductividad hidráulica [*L*/*T*], *Q* es fuente o sumidero [1/L], *Ss* es el coeficiente de almacenamiento específico [*L*⁻¹]. Esta ecuación se discretiza usando un esquema numérico y el sistema se resuelve para el vector **h** compuesto por las incógnitas de la carga hidráulica en un subconjunto de puntos asociados con la malla numérica. A esta malla la llamaremos malla del modelo estocástico. Cualquiera de los parámetros así como las condiciones iniciales o las de frontera pueden representarse como variables aleatorias. En general se reconoce que uno de los parámetros con mayor incertidumbre en esta ecuación es la conductividad hidráulica. Por esta razón, en el ejemplo presentado en este trabajo, la conductividad hidráulica se representa como un campo aleatorio espacialmente correlacionado. Para caracterizar estadísticamente a κ se calcula su media y se realiza un análisis geoestadístico para obtener un modelo de semivariograma que representa su estructura espacial.

3.2.4 Filtro de Kalman

El filtro de Kalman se puede emplear para actualizar la estimación en el momento en que se cuente con datos nuevos de la variable, sin necesidad de utilizar datos anteriores. El término recursivo significa que el filtro recalcula la solución cada vez que una nueva observación o medida se incorpora en el sistema. En su forma general el filtro se basa en dos ecuaciones, una ecuación dinámica y una ecuación de medición. La ecuación dinámica contiene un error aleatorio que no tiene correlación en el tiempo. Sin embargo, Herrera (1998) mostró que el error puede tener una fuerte correlación en el tiempo, cuando se usa un campo aleatorio con correlación espacial para representar a la velocidad, y se deriva con base en éste el modelo de transporte como una ecuación con coeficientes deterministas más un error aleatorio. Por esta razón, el método que propuso Herrera (1998) emplea lo que llamamos el filtro de Kalman estático, que únicamente emplea la ecuación de medición, incorporando el tiempo a través de la utilización de vectores espacio-temporales.

La ecuación lineal de medición del filtro de Kalman discreto que relaciona al vector \mathbf{h} de en las posiciones y tiempos en que se quiere estimar con las muestras z es:

$$z_j = \mathbf{H}_j \mathbf{h} + v_j \tag{Ec. 18}$$

en donde $\{z_j, j = 1, 2, ...\}$ es una secuencia de mediciones de la carga hidráulica. \mathbf{H}_j es la matriz de muestreo de dimensión 1 * N, que no es cero únicamente en la posición correspondiente a la entrada de \mathbf{h} , en donde se toma el muestreo j, y N es la dimensión del vector $\mathbf{h} \cdot \mathbf{H}_j$ es la matriz del muestreo $j \cdot \mathbf{h} = \{h_{ip}\}$ es el vector espacio-tiempo con los valores estimados de la carga hidráulica en las posiciones y tiempos de interés (h_{ip} es la carga hidráulica en la posición x_i en el tiempo t_p). $\{v_j, j = 1, 2, ...\}$ es una secuencia de escalares que contiene el error de medición. Esta es una secuencia blanca gaussiana, con media cero y varianza r_j . La secuencia del error de medición $\{v_j\}$ y el vector \mathbf{h} son independientes.

La matriz de covarianza del error de la estimación es:

$$\mathbf{P}^{\mathbf{n}} = E\left\{\left(h - \hat{h}^{n}\right)\left(h - \hat{h}^{n}\right)^{T}\right\}$$
Ec. 19

en donde $\hat{\mathbf{h}}^{\mathbf{n}} = E\{(h/z_1, z_2, ..., z_n)^T\}$, es el valor esperado de \mathbf{h} , dadas las mediciones $z_1, z_2, ..., z_n$ y *T* denota transpuesta. En esta notación, el superíndice *n* identifica el número de mediciones que se usan para obtener la estimación.

En la aplicación del filtro de Kalman, se estima **h** en una submalla de la malla del modelo estocástico, a la que llamamos malla del filtro de Kalman. Esta malla tiene dos tipos de nodos, definidos como las posiciones de los posibles pozos de muestreo (*S*) y de los puntos de estimación (*E*), que se definirán cuando se explique el método de optimización de la red de monitoreo (sección 3.2.6 de esta tesis). Para la implementación del filtro se requiere proponer una estimación a priori ($\hat{\mathbf{h}}^0$) de **h** en espacio y tiempo, así como de la matriz de covarianza del error de estimación (\mathbf{P}^0). Dadas estas estimaciones a priori, la estimación lineal de mínima varianza para **h** se puede obtener secuencialmente a través de las siguientes ecuaciones de corrección del filtro de Kalman (ec. 7,8 y 9 de la sección 2.2.1.1 de esta tesis):

$$\hat{\mathbf{h}}^{n+1} = \hat{\mathbf{h}}^n + \mathbf{K}_{n+1} (z_{n+1} - \mathbf{H}_{n+1} \hat{\mathbf{h}}^n)$$
 Ec. 20

$$P^{n+1} = P^n - K_{n+1}H_{n+1}P^n$$
 Ec. 21

$$\mathbf{K}_{n+1} = \mathbf{P}^{n} \mathbf{H}_{n+1}^{T} \Big(\mathbf{H}_{n+1} \mathbf{P}^{n} \mathbf{H}_{n+1}^{T} + r_{n+1} \Big)^{-1}$$
 Ec. 22

3.2.5 Estimación de los momentos a priori

El procedimiento para calcular la estimación a priori de \mathbf{h} en espacio y tiempo ($\hat{\mathbf{h}}^{0}$), así como la matriz de covarianza del error de esta estimación (\mathbf{P}^{0}) es la simulación estocástica del tipo Monte Carlo (Zhang, 2002), la cual se explica a continuación.

1) Dadas la media y la covarianza (o semivariograma) de la conductividad hidráulica se obtienen N_r realizaciones de esta variable. 2) Se resuelve numéricamente la ecuación de flujo empleando cada realización de la conductividad hidráulica y se obtienen realizaciones de **h** para un periodo de tiempo. 3) Utilizando promedios de las realizaciones de **h** para cada nodo de la malla del filtro de Kalman se obtiene la media en espacio-tiempo, la que se propone como la estimación a priori, esta estimación es el vector $\hat{\mathbf{h}}^0$ y de la misma manera se calcula su matriz de covarianza. La estimación a priori de **h** en espacio y tiempo ($\hat{\mathbf{h}}^0$), así como la matriz de covarianza del error de la estimación (\mathbf{P}^0) se obtienen con las siguientes ecuaciones.

$$\hat{h}_0 = \overline{h}_{ip} = \frac{1}{N} \sum_{k=1}^{N_r} h_{ip}^k$$
 Ec. 23

$$Cov(e_{ip}, e_{jq}) = Cov_{ip:jq} = \frac{1}{N_r - 1} \sum_{k=1}^{N_r} (h_{ip}^k - \overline{h}_{ip}) (h_{jq}^k - \overline{h}_{jq})$$
 Ec. 24

en donde h_{ip}^k denota la *k*-ésima realización de h en la posición x_i en el tiempo t_p , $\hat{\mathbf{h}}^0$ es el vector que contiene la media \overline{h}_{ip} para todas las realizaciones h_{ip}^k , $Cov(e_{ip}, e_{jq})$ es el elemento (i, p; j, q) de la matriz de covarianza del error de la estimación \mathbf{P}^0 , donde $e_{ip}^k = h_{ip}^k - \overline{h}_{ip}$. Como $\hat{\mathbf{h}}^0$ es un vector en espacio-tiempo, éste incluye una estimación de h para todas las posiciones y tiempos de interés. Por tanto \mathbf{P}^0 es también una matriz de covarianza en espacio-tiempo.

Para el ejemplo que se presentará, el número total de entradas que integran a la matriz de covarianza del error de la estimación de la carga hidráulica es $Nt = (m^* p)^2$, donde p es el número total de tiempos de estimación y posibles tiempos de muestreo y m = NE + NS es el número de nodos de la malla del filtro de Kalman, donde NE es el número de puntos de estimación y NS es el número de pozos de muestreo, ya que no existe intersección entre los puntos de estimación y los de muestreo.

3.2.6 Función para minimizar la varianza del error de la estimación

Como se explicó antes para la selección óptima de las posiciones de los pozos y los tiempos de muestreo, aquí se utiliza un método de optimización, en el que se minimiza una función de la varianza del error de estimación. En este caso, esta función es la suma de la varianza del error sobre todas las posiciones y tiempos de estimación. A esta función la llamamos la varianza total de la estimación de la carga hidráulica y se denota por $\sigma_T^2(n)$. Ésta, cuando se calcula con el plan de monitoreo que incluye *n* muestras es:

$$\sigma_T^2(n) = \sum_{i,p \in E} \sigma_{ip}^2(n)$$
 Ec. 25

en donde $\sigma_{ip}^2(n)$ es la varianza del error de la estimación en el *i*-ésimo punto de estimación y en el tiempo de estimación *p* y E es el conjunto de los índices de los puntos de estimación. Las varianzas $\sigma_{ip}^2(n)$ se obtienen del filtro de Kalman después de tomar *n* muestras, y son los elementos de la diagonal de la matriz de covarianza \mathbb{P}^n que corresponden a los puntos y tiempos de estimación.

El algoritmo iterativo de optimización para la selección de las posiciones y tiempos de muestreo se explica diagramáticamente en la figura 3.3. La selección de las posiciones y tiempos de muestreo, se hace en forma secuencial. El método utiliza un algoritmo iterativo de optimización que escoge una a la vez las posiciones de los pozos y las fechas de muestreo que minimizan la varianza total de la estimación, calculada como la suma de la

varianza sobre todos los nodos y tiempos en que se va a estimar h. En otras palabras, dadas las posiciones $x_1, x_2, ..., x_s$ de los posibles pozos de muestreo, y la matriz de covarianza a priori \mathbf{P}^{\emptyset} , en el primer paso del procedimiento, para $\mathbf{x}_i, i = 1, ..., s$, con el filtro de Kalman se calcula la varianza del error de la estimación que se obtendría al agregar el dato de cada posición de muestreo y se escoge la posición \mathbf{y}_1^* vector que da la varianza total menor. A la matriz de covarianza resultante de aplicar el filtro con \mathbf{P}^{\emptyset} y \mathbf{y}_1^* la denotamos \mathbf{P}_i^* . Una vez que ya se seleccionaron las posiciones de los pozos, $y_j^*, i = 1, ..., k$ para formar parte de la red óptima, se toman las posiciones que no han sido escogidas, y con la matriz de covarianza actualizada \mathbf{P}_i^* , que incluye los cambios debidos al muestreo de las $y_j^*, j = 1, ..., k$ posiciones anteriores, se aplica el filtro de Kalman y nuevamente se escoge la posición que da la varianza total menor. Las fórmulas empleadas para minimizar la varianza total, se presentan en Herrera (1998) y Herrera y Pinder (2005).

Debido a que el proceso es secuencial, se realiza un análisis de la contribución en la reducción de la varianza de cada pozo para determinar cuándo parar el proceso y así quede definido el número total de pozos de la red de monitoreo óptima.

3.3 Caso de estudio sintético

La metodología descrita se probó en un caso sintético basado en una representación simplificada del acuífero del Valle de Querétaro (AVQ). Como una primera prueba del método, se rediseñó una red de monitoreo de los niveles del agua subterránea suponiendo que los cambios de h en los mismos son insignificantes. Para esto se utilizó un modelo numérico de flujo en estado estacionario (Briseño, Herrera & Junez, 2011). El AVQ está localizado en la porción sur oriental del estado de Querétaro, se ubica en el subsuelo de la ciudad de Querétaro y su zona conurbada (ZMCQ) (Mendoza-Cázares & Herrera-Zamarrón, 2007). Su población es la mayor de todo el estado, estimada de 962,240 habitantes en 2007 (Urquiza, 2008). La mayor explotación de agua subterránea en el AVQ es para el uso público urbano, con la cual se abastece a la ZMCQ.

3.3.1 Objetivo de la red de monitoreo

El objetivo del diseño de la red de monitoreo de los niveles del agua subterránea, consistió en seleccionar de entre 33 posibles pozos aquellos que no dieran información redundante para la estimación de h en el acuífero de Querétaro. De acuerdo con este objetivo se estimará h en todo el acuífero, dándole el mismo peso a todas las zonas. A continuación se explica cómo se aplicó el método.

3.3.2 Simulación secuencial gaussiana.

Los nodos de una malla son simulados siguiendo una secuencia aleatoria que visita todos los nodos. El valor atribuido a cada nodo de la malla proviene de una distribución de probabilidad local, la cual es condicionada a los datos originales y a los valores previamente simulados (Barrera, 2007). Es un procedimiento general que puede ser aplicado a cualquier función de covarianza. Permite realizar directamente simulaciones condicionales a un conjunto de datos, y genera realizaciones estocásticas, según lo cuantificado por el variograma y el histograma. Para ver una descripción más completa del método referirse al anexo A.

Con base en un análisis geoestadístico de 46 datos de conductividad hidráulica (K) provenientes de diversos pozos (ver figura 3.2) existentes en la zona de estudio, se ajustó un modelo exponencial isotrópico para el semivariograma muestral del logaritmo natural de la conductividad hidráulica:

$$\gamma_{LnK}(d) = c_0 + c_1 \left(1 - \exp\left(\frac{-3d}{a}\right)\right)$$
 Ec. 26

en donde γ_{LnK} es el semivariograma de Ln K, c_0 es la pepita (nugget), $c_0 + c_1$ es el sill (meseta del semivariograma), d es la distancia de separación y a es la escala de correlación. Los valores ajustados para los parámetros fueron: $c_0 = 0.43$, $c_1 = 0.57$, a = 8900 m y la distancia máxima considerada es de 1262.05 m.

Con el modelo ajustado mediante el análisis geoestadístico (a los 46 datos de Ln K) se generaron 4000 realizaciones aleatorias de Ln K mediante el método conocido como simulación secuencial gaussiana (SGSIM) de las librerías del GSLIB (Deutsch & Journel, 1998). Las simulaciones secuenciales gaussianas se condicionaron a los 46 datos de K y es en estas posiciones en donde todas las simulaciones respetan las mediciones reales de K provenientes de los pozos. Una descripción más detallada del método de simulación secuencial gaussiana y de la aplicación del programa SGSIM, se presenta en el Anexo A. Para generar las simulaciones mediante el método SGSIM, se requiere que $c_0 + c_1 = 1$; en el modelo ajustado esto se cumple. La malla sobre la que se obtienen las realizaciones de Ln K, tiene elementos cuadrados y cubre en su totalidad el área del modelo determinista. Mediante una transformación de los valores de estas realizaciones se obtiene realizaciones de K con media 1.63 m/d (los detalles de la transformación se pueden consultar en Manchuk *et al.* (2004), que es igual a la media de los datos de K disponibles en este acuífero.

3.3.3. Modelo determinista y estocástico de flujo de agua subterránea

La simulación de flujo se realizó con un simulador determinista convencional de elemento finito llamado PTC (Babu D., Pinder, Niemi, Ahlfeld, & Stothooff, 1993). Éste se adaptó utilizando el modelo calibrado para el AVQ por Simuta (2005). Las características del modelo del AVQ se pueden ver en la figura 3.4. La zona de modelación corresponde a la del acuífero del Valle de Querétaro e incluve también al Valle de Obrajuelo, en el estado de Guanajuato, con un total de 426.87 km². Este último acuífero se incluye debido a que, aunque por razones administrativas la Comisión Nacional del Agua incluye al Valle de Obrajuelo como parte del acuífero de Celaya, Simuta (2005) concluye que existe conexión hidráulica entre ellos y es necesario modelarlos en forma conjunta. La malla del modelo es triangular y cuenta con 6676 nodos, 13066 elementos y una capa. Los valores de conductividad hidráulica en cada realización, se asignaron a los nodos de la malla numérica del modelo determinista, encontrando el nodo más cercano al centro de la malla de elementos cuadrados utilizada para las realizaciones de K. Los parámetros hidráulicos del modelo son: el almacenamiento específico es uniforme en toda la zona de modelación (Ss=0.001); la recarga se considera variable en la zona con rangos de 0.011 a 0.067 metros/día para la recarga vertical originada por la precipitación y de 2.45x10⁻⁵ a 0.0003229 metros/día en la recarga originada por el riego. En el caso de estudio no se considera extracción por bombeo. Se tienen cinco zonas con condiciones de frontera de carga asignada, en promedio 100 metros por debajo de la topografía.

Figura 3. 3 Características del modelo del AVQ

Figura 3. 4 Método de Herrera y Pinder.

El modelo estocástico de flujo tiene la misma malla que el modelo determinista de flujo. El diseño de la malla cumple el criterio sugerido por Ababou *et al.* (1988) para que las simulaciones del Ln K no tengan una distorsión significativa debido a la discretización. Éste

es, $\Delta x \leq \frac{\lambda}{4}$, donde Δx es el tamaño de los elementos de la malla, λ es la escala de correlación que para el modelo exponencial es $\frac{a}{3}$. Las condiciones de frontera, así como todos los parámetros del modelo se tomaron como deterministas con excepción de *K*, que es considerada como un campo aleatorio con media 1.63 metros/día y correlación espacial dada por el semivariograma exponencial isotrópico descrito en la sección anterior. Para obtener la solución del modelo estocástico se generaron 4000 realizaciones de *K* y sus correspondientes realizaciones de **h**.

Las posiciones en las que se estimó h con los datos que se obtendrán de la red de monitoreo, se asocian con los nodos de lo que llamamos malla de estimación. De acuerdo a lo explicado anteriormente, es en estos puntos de estimación en donde se minimiza la varianza del error de estimación de h en el proceso de optimizar la red de monitoreo. De acuerdo al objetivo de la red de monitoreo, para darle el mismo peso a toda el área del acuífero en la optimización, se propuso como malla de estimación a una malla compuesta por 66 puntos de estimación aproximadamente equiespaciados sobre el AVQ (figura 3.5). Las estimaciones de h se calcularon en los nodos de la malla de estimación, y por lo tanto la matriz de covarianza incluyó únicamente a estos nodos y a las posiciones de los 33 posibles pozos de monitoreo ya existentes en el AVQ, que también se pueden ver en la figura 3.5.

Para verificar que el número de las realizaciones del modelo estocástico fueran suficientes, se estableció el criterio de convergencia para la matriz de covarianza basado en las siguientes ecuaciones:

$$D_{(m,m+\Delta)} = \frac{1}{N^2} \sum_{i=1}^{N} \sum_{j=1}^{N} \left| dif_{(m,m+\Delta)}(i,j) \right|$$
 Ec. 27

$$dif_{(m,m+\Delta)}(i,j) = P_m(i,j) - P_{(m+\Delta)}(i,j)$$
 Ec. 28

en donde P_m es la matriz de covarianza calculada con *m* realizaciones, Δ es el incremento en el número de las realizaciones, *N* es el número de entradas de la matriz de covarianza, $D_{(m,m+\Delta)}$ es el criterio de convergencia. En la prueba el incremento Δ utilizado fue de 20. De acuerdo al criterio de convergencia para la matriz de covarianza de la carga hidráulica se calculo que la peor convergencia corresponde a la realización 100 con un valor de 0.1930 y la mejor convergencia corresponde a la realización 3800 y 4000 con un valor de 0.003. Con base en estos criterios se consideró que 4000 realizaciones fueron suficientes para determinar la matriz de covarianza de h (ver figura 3.6), la cual se tomó como matriz de covarianza a priori para continuar con el diseño de la red óptima de monitoreo piezométrico.

3.4 Resultados

La figura 3.7a muestra la varianza del error de la estimación inicial (diagonal de la matriz de covarianza de la ecuación 24), ésta es la varianza de *h* obtenida de la simulación estocástica. Como se puede observar tiene valores entre 0 y 9, con valores mayores hacia el límite oeste de la zona en la que se obtendrán las estimaciones y en la región noreste también se tiene un máximo local. Esto indica que la carga hidráulica es más sensible a los cambios en la conductividad hidráulica en esas regiones.

Figura 3. 5 Pozos de monitoreo (izquierda) y malla de estimación (derecha).

Figura 3. 6 Criterio de convergencia para la matriz de covarianza.

El método de optimización propuesto es secuencial y se añade un pozo de monitoreo en cada paso. Esto produce los resultados que se muestran en forma de gráfica en la figura 3.8, en donde se representa la varianza total en los puntos de estimación contra el número de pozos incluidos en la red. Se observa que los primeros pozos elegidos proporcionan mucha información y la varianza total se reduce significativamente, y conforme se van añadiendo pozos a la red de monitoreo, la información obtenida por cada pozo va disminuyendo. La varianza total inicial para los 66 puntos de estimación es de cerca de 120, y conforme se van añadiendo pozos a la red de monitoreo, esta varianza disminuye hasta un valor cercano a 40. Esto indica que al utilizar todos los pozos de la red de monitoreo la varianza total no baja de este valor, que al repartir equitativamente esta varianza sobre los 66 puntos de estimación da una varianza por pozo cercana a 0.6. Sin embargo, esta ilustración también hace ver que los últimos pozos contribuyen muy poco a reducir la varianza por lo que es natural analizar la pertinencia de dejarlos en la red de monitoreo.

Por la forma en la que se construye la red de monitoreo, el orden en el que se eligen los pozos indica el grado de importancia de cada pozo en la disminución de la varianza, por ese motivo a éste le llamamos orden de importancia de los pozos. El orden de importancia de los pozos se puede ver en la figura 3.8. Como se puede observar, el pozo con orden de importancia 1, se encuentra en la parte suroeste de la zona establecida para optimizar la red de monitoreo, esto es lógico, ya que ésta es la región con mayor varianza inicial. De igual forma el pozo con orden de importancia 2 se encuentra al noreste de la zona de estudio, en donde se señaló anteriormente que existe un máximo local de esta varianza. Es importante

recalcar que al seleccionar estos pozos, se toma en cuenta la varianza del error de la estimación en toda la zona de influencia del pozo que es la zona que se encuentra alrededor del pozo, y no únicamente en el punto que se escoge. De esta manera, se escogen también los pozos con orden de importancia 3, 4 y 5, en posiciones en las que se tienen varianzas altas, y en las que no se han escogido pozos anteriormente. A partir del pozo con orden de importancia 6, van cobrando más importancia las selecciones realizadas anteriormente y las zonas de influencia de los pozos (zonas con correlaciones altas obtenidas de las matrices de covarianza resultantes de aplicar el filtro de Kalman conforme se van añadiendo los pozos) y se inicia la selección de pozos cercanos a otros ya elegidos o en la zona central, que inicialmente tiene varianzas pequeñas.

Figura 3.7 Varianza total (metros²) vs. número de pozos en la red.

Figura 3. 8 Varianza del error de la estimación inicial, y varianza final después de muestrear 12, 22 y 33 pozos.

Figura 3. 9 Orden de importancia de los pozos.

3.4.1 Análisis para determinar el número total de pozos en la red de monitoreo

Como se comentó antes, en la optimización de esta red de monitoreo el objetivo es determinar los pozos que no sean redundantes. Para hacer esto se lleva a cabo un análisis en el que se produce una estimación inicial $\hat{\mathbf{h}}^0$ y se actualiza con los datos asociados con una red de monitoreo con un determinado número de pozos, mediante la aplicación del filtro de Kalman. En el caso de estudio sintético este procedimiento se realizó con el objeto de mostrar cómo se haría este análisis en un caso real, y para ello se tomó al azar una de las realizaciones de \mathbf{h} del modelo estocástico como si fuera la carga hidráulica en campo que se quiere estimar.

Como un primer paso, se muestran los valores de *h* en los 6676 nodos de la malla del modelo (figura 3.10a). También se muestran las estimaciones de \hat{h} producidas con el filtro de Kalman en los 66 nodos de la malla de estimación utilizando 12 (figura 3.10b), 22 (figura 3.10c) y 33 (figura 3.10d) datos de *h* que corresponden a los pozos con el orden de importancia del 1 hasta el número indicado. Los mapas de carga hidráulica mostrados en la

figura 3.10 se generaron empleando el método de interpolación conocido como kriging simple. La estimación se realizó únicamente para la zona del estado de Querétaro, (el Valle de Obrajuelo no se incluyó en la estimación). La comparación entre estas piezometrías indica, por un lado, que la estimación generada con el filtro empleando 12, 22 y 33 datos de los pozos de muestreo de la red propuesta, generan piezometrías acordes con la realización escogida de h; por otro lado, las piezometrías generadas con 12, 22 y 33 datos son muy similares.

En segundo lugar, se realizó una comparación entre la varianza inicial del modelo (Figura 3.8a) y las varianzas finales obtenidas con el filtro de Kalman después de incorporar los datos de 12, 22 y 33 pozos de muestreo de la red de monitoreo propuesta. Las figuras 3.8b, 3.8c y 3.8d muestran las varianzas que se obtienen del filtro de Kalman después de muestrear 12, 22 y 33 pozos. La varianza final después de muestrear 33 pozos disminuyó considerablemente y tiene valores entre 0 a 3. También se puede ver que las varianzas del error de la estimación usando 22 pozos y usando 33 pozos son muy similares, lo que confirma que existe una redundancia importante entre los 11 pozos que se añaden.

Adicionalmente, se calcularon los errores en los 66 puntos de estimación, restando a la realización escogida la estimación producida con el filtro. Los errores más grandes detectados para el caso de los 33 pozos se encuentran ubicados en las zonas NE y SW y varían de -1.29 a 1.93 metros y se ubican en las zonas donde se encuentran las varianzas más grandes de estimación y se debe a que en estas zonas no se cuenta con ningún pozo de muestreo que aporte datos para reducirlas. Esto indica que se requerirían pozos adicionales en estas zonas para obtener una mejor estimación.

Las zonas NE y SO cuentan con mediciones de conductividad hidráulica y presentan alta varianza inicial de la carga hidráulica. Las zona E cuenta con mediciones de conductividad hidráulica y la NO no cuenta con ninguna medición de la conductividad hidráulica, sin embargo, ambas zonas presentan baja varianza inicial de la carga hidráulica. Después de hacer el diseño de la red de monitoreo de los niveles de agua subterránea con 33 mediciones de h, se observa que en toda la zona de estudio la varianza inicial se redujo, incluso en la zona NO que no cuenta con mediciones de conductividad hidráulica. De los resultados anteriores, no suponemos que las mediciones de la conductividad hidráulica afecten directamente la reducción de la varianza de la carga hidráulica. Los resultados si

muestran un efecto directo entre los datos de la carga hidráulica en la reducción de la varianza inicial de h. Se recomienda realizar un análisis más exhaustivo para conocer con mayor detalle el efecto de las mediciones de la conductividad hidráulica sobre la disminución en la varianza de la carga hidráulica.

Las zonas NE y SO cuentan con mediciones de conductividad hidráulica y presentan alta varianza inicial de la carga hidráulica. La zona E cuenta con mediciones de conductividad hidráulica y la zona NO no cuenta con ninguna, sin embargo, ambas zonas presentan baja varianza inicial de la carga hidráulica. Después de hacer el diseño de la red de monitoreo de los niveles de agua subterránea con 33 mediciones de h, se observa que en la zona NE y SO la varianza inicial se redujo, en la zona NO la varianza inicial se redujo y en la zona E la varianza inicial se redujo aún más. De los resultados anteriores suponemos que las mediciones de la carga hidráulica, pero si muestran un efecto directo entre los datos de la carga hidráulica en la reducción de la varianza inicial de h. Se recomienda realizar un análisis más exhaustivo para conocer con mayor detalle el efecto de las mediciones de la conductividad hidráulica el a carga hidráulica, sobre la disminución en la varianza de la carga hidráulica,

Para comparar las alternativas entre la opción de una red de monitoreo con 12, 22 o 33 pozos se realizó el cálculo de los errores. El error e_i se calculó mediante la diferencia de los datos de la realización de *h* y de la $\hat{\mathbf{h}}$ estimada mediante el filtro de Kalman en los puntos de la malla de estimación con cada una de las opciones de números de pozos. Los errores calculados son el error medio (EM), el error cuadrático medio (ECM) y el error cuadrático medio estándar (ECME).

$$EM = \frac{1}{n} \sum_{i=1}^{n} e_i$$
 Ec. 29

 $ECM = \frac{1}{n} \sum_{i=1}^{n} (e_i)^2$ Ec. 30

63

$$ECME = \frac{1}{n} \sum_{i=1}^{n} \frac{(e_i)^2}{\sigma_i^2}$$
 Ec. 31

Donde σ_i^2 es la varianza de la estimación desde el punto *i* hasta *n*, que es número total de puntos de estimación.

El EM es un indicador de la sobrestimación o subestimación de los valores de la realización de *h*. El ECM es una medida de la magnitud del error de estimación. La teoría estadística indica que mientras más cercanos estén el EM y el ECM a cero más adecuado será el ajuste entre la realización de h y la estimación de h con 12, 22 o 33 pozos (Armando, 1994). El error cuadrático medio estándar (ECME) mientras más cercano esté a uno indica el nivel de confianza entre la realización de h y los valores de la estimación h . Como los resultados de estos errores para cada uno de los casos de estudio se muestran en el cuadro 3.1. Se puede observar como el ECM y ECME tienen valores cercanos a lo que indica la teoría, sin embargo, es importante notar que cuando el número de pozos que conforman la red disminuye, también decrece el ECME.

Número de pozos	EM (metros)	ECM (metros ²)	ECME	Max Error (+) (metros)	Max Error (-) (metros)
12	0.12124242	0.42495848	0.72998227	2.287	-1.46
22	0.18506818	0.406800151	0.927066718	1.943	-1.325
33	0.1811047	0.38521572	0.96964912	1.935	-1.29

Cuadro 3. 1 Comparación de los errores en la estimación con las opciones consideradas

3.4.2 Red de monitoreo final

Del análisis anterior se concluye que, al utilizar una red de 22 pozos se obtiene una estimación con errores similares a los obtenidos con los 33 pozos, esto indica que los once pozos con orden de selección de 23 a 33 se pueden considerar como redundantes. Además, los resultados de la piezometría indican que con 22 pozos obtenemos una representación

piezométrica muy parecida a la real, con errores de estimación en el rango de 1.94 a -1.33 metros, y con un error cuadrático medio estándar del 0.927, muy cercano a 1. Es importante tener en cuenta que el número de pozos que conformaran una red de monitoreo final, esta definida por la autoridad federal, estatal o municipal de aguas, o en su caso por los contaminadores potenciales del agua subterránea, como empresas que requieran de algún monitoreo de calidad del agua en sus instalaciones. La red depende del tipo y volumen de datos requeridos y varía considerablemente en función del aspecto de gestión de que se trate, pero inevitablemente también dependerá de los recursos financieros disponibles y del nivel de riesgo que se esté dispuesto a correr.

Figura 3. 10 Piezometrías de la realización de h (metros) y estimación de h con 12, 22 y 33 pozos

Del análisis de la varianza de los errores de la estimación al utilizar todos los pozos posibles indica que en las zonas NE y SW de la zona de estudio, sería recomendable incluir algunos pozos de monitoreo que aporten datos de carga hidráulica y se logre una mejor estimación deĥ en la zona de estudio.

3.4.3 Bandas de confianza

Para establecer las bandas de confianza, primeramente se realizó una comprobación sencilla de que las realizaciones de carga hidráulica tienen un comportamiento normal. Para ello se elaboró un programa que guardara en un archivo, las cargas hidráulicas de cada nodo de la malla de estimación, calculadas con cada una de las 4000 realizaciones de conductividad hidráulica. Posteriormente en 11 puntos escogidos aleatoriamente se elaboraron los histogramas de la carga hidráulica. En las figuras 3.11 y 3.12 se observan los histogramas de carga hidráulica obtenidos a partir de 4000 datos de carga. De la comparación entre la moda y la mediada, y de la simetría mostrada en los 11 histogramas, se presupone que la distribución es normal. Sin embargo es importante mencionar que no se realizó ninguna prueba específica.

Con la suposición de que la carga hidráulica tiene un comportamiento normal, tomamos el mismo criterio de probabilidad del 67% que Jazwinski (1970) uso para calcular las bandas de confianza. Sin entrar al detalle en su cálculo, una de las medidas de dispersión de las distintas estimaciones alrededor del valor real es la llamada desviación estándar (error estándar) del estimador. Una vez la desviación estándar equivale al llamado margen de error, o nivel de precisión de la estimación, que se utiliza para obtener intervalos de estimación con 67% de confianza (regularmente se emplea el 95%). Así, en la distribución hipotética de las 100 estimaciones del valor real, uno esperaría que el 67 de las 100 estimaciones del error estándar. A esto se le llama un intervalo de confianza del 67%.

Caso	Nodos dentro de las bandas de confianza (de 99 nodos)	Datos por encima de la banda de confianza positiva	Datos por debajo de la banda de confianza negativa	Datos totales fuera de la banda de confianza	Datos totales dentro de la banda de confianza
12 (de 1188 datos)	52 52.53%)	131 datos (11.03%)	184 datos (15.49%)	315 datos (26.52%)	873 datos (73.48%)
22 (de 2178 datos)	44 (74.44%)	321 datos (14.74%)	312 datos (14.33%)	633 datos (29.06%)	1545 datos (70.94%)
33 (de 3267 datos)	43 (43.30%)	444 datos (13.59%)	462 datos (14.14%)	906 datos (27.73%)	2367 datos (72.27%)

Cuadro 3. 2 Resultados de las bandas de confianza de la estimación en los casos de estudio

En el caso de la estimación realizada con 33 mediciones de carga hidráulica provenientes de los pozos de muestreo, se tienen 3267 datos (33 pozos + 66 puntos de estimación = 99 puntos * 33 mediciones de h para calcular la estimación = 3267 datos) de estos 906 están fuera de la banda de confianza (444 por arriba y 462 por debajo). Esto representa que el 72.27% de los puntos se encuentran dentro del 67% de las bandas de confianza. Es importante mencionar que en 56 nodos se encuentra al menos un dato fuera de la banda de confianza 43 nodos si se encuentran totalmente dentro de la banda de confianza confianza. El cuadro 3.2 presenta el resumen de los resultados de las bandas de confianza conforme el número de pozos considerado para la red (ver figuras 3.10 y 3.11).

Figura 3. 11 Histogramas en 6 puntos de la malla de estimación (no ubicados en los pozos).

Figura 3. 12 Histogramas en 5 puntos de la malla de estimación (ubicados en los pozos).

3.5 Conclusiones

La adaptación del método de Herrera y Pinder que se realizó en esta tesis doctoral, contribuye a que esta técnica de diseño se pueda implementar para el diseño óptimo de redes de monitoreo de los niveles de agua subterránea en acuíferos que presenten explotación, explotación intensiva o sobreexplotación. Con el diseño de este tipo de redes se logra adquirir información sobre los niveles de un acuífero en espacio y tiempo, la cual puede emplearse en modelos de simulación numérica para anticipar los efectos de la explotación del acuífero y prevenir problemas como los siguiente: A) disminución los niveles de agua así

como la aportación a los ríos, manantiales y humedales, B) el descenso de niveles afecta a los usuarios que bombean el líquido, aumentando los costos de explotación ya que tienen que bombear el agua de mayor profundidad y en algunos casos tienen que abandonar o sustituir algunos pozos, C) deterioro de la calidad del agua subterránea por intrusión de agua de mar o por la entrada de aguas subterráneas salinas o de calidad química deficiente, etc. (Sahuquillo, Custodio, & Llamas, 2008).

Del análisis anterior se concluye que el diseño de la red de monitoreo piezométrica para este caso de estudio mediante el método de Herrera y Pinder es satisfactorio y que se tienen buenas perspectivas para aplicar exitosamente esta metodología al diseño de redes de monitoreo de los niveles del agua subterránea en casos reales. En trabajo futuro se planea realizar una prueba similar para el diseño espacio-temporal de una red de monitoreo piezométrica.

Del análisis del ECM así como del ECME se observa que el aumento en el número de pozos de muestreo ocasiona una disminución del ECM y de los errores máximos y mínimos así como un ECME más cercano a la unidad.

Como se mostró en los resultados del análisis de la varianza en la figura 3.7, el modelo estocástico de flujo es una valiosa herramienta para evaluar la incertidumbre en las estimaciones del modelo, haciendo a la metodología muy efectiva en la selección de las posiciones y tiempos de muestreo que minimizan la incertidumbre de la estimación. Asimismo la metodología es capaz de sugerir en qué zonas se requiere la construcción y/o habilitación de pozos de monitoreo que aporten datos de carga hidráulica para lograr una mejor estimación en la zona de estudio.

Finalmente es importante hacer notar que al aplicar este tipo de métodos a casos reales, además de utilizar criterios de optimización es recomendable utilizar criterios geohidrológicos, que dependen del conocimiento del área de estudio.

Capítulo 4. Método propuesto para la estimación de parámetros

El término asimilación de datos se refiere al proceso de combinar una predicción incierta del modelo de una variable de estado, con un conjunto de mediciones discretas (Evensen, 2007). La varianza del error de las mediciones se supone conocida, la cual deberá tomarse en cuenta durante el proceso de asimilación de datos. El objetivo de la asimilación de datos en el contexto de la modelación inversa consiste en estimar un campo aleatorio de variables de estado, extrayendo o filtrando tanta información como sea posible de observaciones con ruido, teniendo la mejor estimación estadística posible del campo de la variable. El proceso de filtrado puede dividirse en un paso predictivo y un paso condicionante. El estado en el tiempo t_k se utiliza como condición inicial en el modelo dinámico para obtener una predicción del estado en el siguiente paso de tiempo t_{k+1} (que es en donde las observaciones están disponibles), entonces la predicción del estado podrá ser condicionada a estas observaciones (Schöniger, 2010).

Como se describe en el capítulo dos de esta tesis, el filtro de Kalman (1960) permite evaluar la evolución de la predicción del error sobre el tiempo, y ha sido ampliamente empleado en diferentes campos de la ciencia, debido a que el filtro obtiene recursivamente estimaciones lineales no sesgadas y con varianza mínima para el estado de un sistema utilizando datos con ruido (Jazwinski, 1970). En el caso de que el sistema dinámico sea no-lineal, es posible usar modificaciones del filtro de Kalman, tales como el filtro de Kalman extendido, el filtro de Kalman ensamblado y el llamado ensamble suavizado (ES).

En el filtro de Kalman ensamblado (Evensen, 1994) y en el ensamble suavizado (Van Leeuwen & Evensen,1996; Herrera G.S.,1998) un ensamble se usa para definir al vector estado. El ensamble se obtiene empleando simulación Monte Carlo y promediando sobre el ensamble se calcula la media y la covarianza del error del modelo. En el esquema de

pronóstico-actualización de estos métodos, se utilizan las ecuaciones de corrección del estado del filtro de Kalman (ecuaciones 7, 8 y 9) y se substituye a las ecuaciones de predicción por cálculos de ensamble determinados mediante métodos Monte Carlo. Es decir, la ecuación (5) se sustituye por la media del ensamble y la ecuación (6) se substituye por la matriz de covarianza del error del ensamble, calculada a través de promedios. La ganancia de Kalman se calcula a partir de las covarianzas de los errores proporcionadas por el ensamble de estados del modelo, y se actualiza cuando nuevas mediciones están disponibles. El ES es similar al kriging simple en espacio y tiempo, usando un ensamble para la matriz de covarianza del error en espacio y tiempo (Evensen, 2009). Actualmente el ES se emplea en procesos de asimilación secuencial de datos y el método fue originalmente propuesto, como una alternativa estocástica o Monte Carlo, para el filtro de Kalman extendido.

Una diferencia entre el FKEn y el ES se encuentra en la rutina de actualización, ya que el FKEn únicamente actualiza el estado actual del modelo, y el ES incluye todos los estados previos del modelo (representando la probabilidad condicional de todos los estados del modelo actualizado en el tiempo pasado) dadas las mediciones del tiempo actual.

El método de asimilación de datos que desarrolló y aplicó Herrera en 1998 en el diseño óptimo (en espacio y tiempo) de redes de monitoreo de la calidad de agua subterránea (capítulo 3), es muy parecido al llamado ensamble suavizado de van Leeuwen y Evensen (ESLE), por esta razón nos referimos a él como ensamble suavizado de Herrera (ESH). El ESH se aplica de la misma forma que el ensamble suavizado (mismas ecuaciones de corrección y mismos requerimientos), la diferencia estriba en que en el ESLE se actualiza cada miembro del ensamble (o realización) independientemente y posteriormente se promedia para obtener los momentos requeridos, lo que además hace necesario perturbar las observaciones para obtener la matriz de covarianza correcta al promediar.

El ESH se tomó de base para desarrollar e implementar en esta tesis doctoral el método de estimación conjunta del parámetro del Ln K y del estado (carga hidráulica y/o concentración de algún soluto). Después de Herrera (1998), el método de ensamble suavizado se aplicó únicamente una segunda vez a problemas de estimación de parámetros de agua

subterránea, por Bailey y Baù (2010), en la estimación de la conductividad hidráulica usando datos de carga hidráulica y flujo de retornos.

El ES ha ganado popularidad debido a su simple formulación conceptual y su relativa facilidad de implementación, además de que los requerimientos computacionales son accesibles. La mayor ventaja del ensamble suavizado, es que no es necesario hacer la linealización de las ecuaciones.

4.1 Metodología para la estimación del parámetro Ln K y del estado

Como se mencionó antes, el objetivo principal a alcanzar en esta de tesis doctoral es desarrollar y aplicar un método de estimación conjunta del parámetro logaritmo natural de la conductividad hidráulica y del estado (carga hidráulica y/o concentración) para un modelo estocástico de flujo y transporte de aguas subterráneas

Las principales razones para que en esta tesis se decidiera extender el método de ESH propuesto por Herrera (1998) para la estimación conjunta del logaritmo natural de la conductividad hidráulica y el estado son las siguientes:

- Su capacidad para reconstruir campos de carga hidráulica y del contaminante en un acuífero en el presente pasado y futuro, cuando están disponibles observaciones de la carga hidráulica, de la concentración, o del parámetro de Ln K. Lo que también permite utilizarlo en el diseño óptimo de redes de monitoreo espacio temporales.
- Primero se corre el modelo de simulación y posteriormente se hace la asimilación de datos sin tener que correr el modelo nuevamente, lo que lo hace al método muy flexible.
- Es una herramienta poco explorada en la estimación de parámetros de agua subterránea.

El método de estimación de parámetros y estado propuesto en esta tesis tiene tres pasos:

1) Dadas la media de K y el semivariograma de Ln K, se obtienen realizaciones aleatorias de este parámetro con un método de simulación. En los casos de estudio

propuestos en esta tesis, se emplean para generar las realizaciones del Ln K al método de simulación secuencial gaussiana (Anexo A) y/o el método de muestreo por hipercubo latino (LHS). Para una explicación del método LHS consultar Simuta-Champo y Herrera-Zamarrón (2010).

- 2) Usando cada realización de la conductividad hidráulica, se emplea el modelo estocástico de flujo y/o transporte para producir una realización de la carga hidráulica y/o de la concentración del contaminante, el total de las realizaciones se emplea para obtener la media de Ln K y del estado (h y/o c), así como la matriz de covarianza cruzada en espacio y tiempo del parámetro y el estado (Ln K-h-c).
- 3) Empleando el ESH se realiza la estimación del parámetro de Ln K, utilizando como estimación y covarianza a priori a la media de las realizaciones y su correspondiente matriz de covarianza. Se puede emplear para realizar la estimación observaciones de Ln K, h o c o mediante combinaciones de Ln K y/o h y/o c.

A continuación se presentan las ecuaciones de flujo y transporte de aguas subterráneas que se emplean en la metodología y posteriormente se realiza la descripción de la implementación del ESH para obtener realizaciones de Ln K, h y c.

4.1.1 Modelo estocástico

El modelo estocástico de flujo y transporte se basa en modelos deterministas calibrados. La ecuación general de flujo y la ecuación general de transporte convección y dispersión junto con la Ley de Darcy se emplean para describir la evolución de la pluma del contaminante y se describen a continuación:

$$\nabla \cdot (K\nabla h) - Ss \frac{\partial h}{\partial t} + Q = 0$$
 Ec. 32

$$\frac{\partial c}{\partial t} - \nabla \cdot \left(D \cdot \nabla c - Vc \right) + Qc^{w} = 0$$
Ec.

33

$$V = -\frac{K}{\phi} \cdot \nabla h$$
 Ec. 34

en donde h es la carga hidráulica [L], K es la conductividad hidráulica [L/T], Q es el bombeo (fuente o sumidero) $[L^3/T]$, Ss es el coeficiente de almacenamiento específico $[L^{-1}]$, c es la concentración del soluto [ML⁻³], D es la dispersión hidrodinámica [L²/T], ϕ es la porosidad efectiva [-], V es la velocidad [L/T], c^w es la concentración del fluido bombeado $[ML^{-3}]$ y t es el tiempo [T]. Los coeficientes de las ecuaciones son los parámetros, que son las mediciones de las propiedades, los contornos y las tensiones del sistema; las variables dependientes son las medidas del estado del sistema (carga hidráulica y/o concentración) y se determinan matemáticamente mediante la resolución de las ecuaciones (Konikow, 1996). Cualquiera de los parámetros así como las condiciones iniciales o las de frontera pueden representarse como variables aleatorias. La conductividad hidráulica presenta una considerable variabilidad espacial debida a la heterogeneidad de las propiedades en los sistemas geológicos y se determina de forma indirecta, lo que lleva a que sus estimaciones tengan cierto grado de incertidumbre. Es por lo anterior que en general se reconoce que uno de los parámetros con mayor incertidumbre en esta ecuación es la conductividad hidráulica (Konikow, 1996). Por esta razón, en los ejemplos presentados en este trabajo de tesis, la conductividad hidráulica se representa como un campo aleatorio espacialmente correlacionado. Para caracterizar estadísticamente a la conductividad hidráulica, se calcula su media y se realiza un análisis geoestadístico para obtener un modelo de semivariograma que representa su estructura espacial. Dadas la media de K y el semivariograma de Ln K, se obtienen realizaciones aleatorias de este parámetro con un método de simulación. En los casos de estudio propuestos en esta tesis, se emplean para generar las realizaciones del Ln K al método de simulación secuencial gaussiana (Anexo A) y el método de muestreo por hipercubo latino.

4.1.2 Ensamble suavizado de Herrera

El ensamble suavizado de Herrera únicamente utiliza la ecuación de medición y las ecuaciones de corrección (ecuaciones 7, 8 y 9). En la adaptación del ESH realizada en esta

tesis, el vector estado está formado por el parámetro y el estado a estimar, para todos los tiempos de interés. El vector estado X está conformado por los vectores E, F y G, en donde F es el vector del parámetro Ln K, E y G son los vectores con las variables estado para la carga hidráulica y la concentración de contaminantes, respectivamente. Tiene la siguiente estructura:

• Vector estado para la estimación del parámetro Ln K y del estado para h :

$$X = \begin{pmatrix} E \\ F \end{pmatrix} = \begin{pmatrix} (h_1, h_2, \dots, h_{N_h})^T \\ (Ln \ K_1, Ln \ K_2, \dots, Ln \ K_{N_{LnK}})^T \end{pmatrix}$$

• Vector estado para la estimación del parámetro Ln K y del estado para h y c:

$$X = \begin{pmatrix} E \\ F \\ G \end{pmatrix} = \begin{pmatrix} (h_1, h_2, \dots, h_{N_h})^T \\ (Ln \ K_1, Ln \ K_2, \dots, Ln \ K_{N_{LnK}})^T \\ (c_1, c_2, \dots, c_{N_C})^T \end{pmatrix}$$

El tamaño del vector de estado se determina de acuerdo al número de posiciones en las que se quiera estimar el Ln K, y el número de posiciones en espacio y tiempo en las que se quiera estimar cada una de las variables de estado. En los ejemplos presentados en esta tesis las estimaciones se hacen sobre submallas del modelo numérico, que pueden ser diferentes para Ln K, h y c.

Para la aplicación del ESH se utilizan las ecuaciones de corrección descritas en el capítulo 2, con la estimación y la covarianza del error de la estimación a priori propuestas como la media del ensamble y su matriz de covarianza. El ensamble define todas las posibles soluciones al problema de estimación y los miembros del ensamble son las realizaciones de Ln K, h y c.

4.1.3 Estimación de los momentos a priori

El procedimiento para calcular la estimación a priori en espacio y tiempo (\hat{X}^{0}), así como la matriz de covarianza del error de esta estimación (\mathbf{P}^{0}) es la simulación estocástica del tipo Monte Carlo (Zhang, 2002), la cual se explica a continuación.

- Dadas la media y la covarianza (o semivariograma) de la conductividad hidráulica se obtienen N_r realizaciones de esta variable.
- Se resuelve numéricamente la ecuación de flujo y/o transporte empleando cada realización de K y se obtienen realizaciones de h y c para un periodo de tiempo.
- 3) Utilizando promedios de las realizaciones del parámetro Ln K y del estado para cada nodo de la malla de estimación se obtiene la media en espacio-tiempo, la que se propone como la estimación a priori, esta estimación es el vector \hat{X}^0 que esta compuesto por la media de Ln K, h y c y de la misma manera se calcula su matriz de covarianza cruzada Ln K-h-c.

El procedimiento para calcular la estimación a priori de la concentración es el mismo para calcular la estimación a priori de Ln K y h (la estimación a priori de h se describe en la sección 3.2.5 de esta tesis). El tamaño de la malla de estimación y los tiempos de muestreo pueden ser diferentes para Ln K, h y c.

La estimación a priori de *c* en espacio y tiempo ($\hat{\mathfrak{c}}^0$), así como la matriz de covarianza del error de la estimación (\mathbf{P}_c^0) se obtienen con las siguientes ecuaciones.

$$\bar{\mathbf{c}}_0 = \bar{c}_{ip} = \frac{1}{Nr} \sum_{k=1}^{Nr} c_{ip}^k$$
 Ec. 35

$$\overline{\mathbf{P}}_{c}^{0} = Cov(e_{ip}, e_{jq}) = Cov_{ip:jq} = \frac{1}{N_{r} - 1} \sum_{k=1}^{N_{r}} (c_{ip}^{k} - \overline{c}_{ip})(c_{jq}^{k} - \overline{c}_{jq})$$
 Ec. 36

en donde c_{ip}^{k} denota la *k*-ésima realización de c en la posición x_{i} en el tiempo t_{p} , \mathbf{c}^{0} es el vector que contiene la media \overline{c}_{ip} para todas las realizaciones c_{ip}^{k} , $Cov(e_{ip}, e_{jq})$ es el elemento (i, p; j, q) de la matriz de covarianza del error de la estimación \mathbf{P}_{c}^{0} , donde $e_{ip}^{k} = c_{ip}^{k} - \overline{c}_{ip}$. Como \mathbf{c}_{0} es un vector en espacio-tiempo, éste incluye una estimación de c para todas las posiciones y tiempos de interés. Por tanto \mathbf{P}_{c}^{0} es también una matriz de covarianza en espacio-tiempo.

La estimación a priori está conformada por:

$$\operatorname{Con} \quad \overline{X} = \begin{bmatrix} \overline{\mathbf{h}}^{0} \\ \overline{\mathbf{Ln}} \mathbf{K}^{0} \\ \overline{\mathbf{c}}^{0} \end{bmatrix} \quad \mathbf{y} \quad \overline{P} = \begin{bmatrix} \overline{\mathbf{P}}^{0}_{h} & \overline{\mathbf{P}}^{0}_{LnK-c} & \overline{\mathbf{P}}^{0}_{c-h} \\ \overline{\mathbf{P}}^{0}_{h-LnK} & \overline{\mathbf{P}}^{0}_{LnK} & \overline{\mathbf{P}}^{0}_{c-LnK} \\ \overline{\mathbf{P}}^{0}_{h-c} & \overline{\mathbf{P}}^{0}_{LnK-c} & \overline{\mathbf{P}}^{0}_{c} \end{bmatrix}$$
 Ec. 37

En donde \overline{X} es la media del ensamble, $\overline{\mathbf{h}}^0$ es la media del vector espacio-temporal \mathbf{h} y $\overline{\mathbf{Ln}}\mathbf{K}^0$ es la media del ensamble del vector \mathbf{Ln} \mathbf{K} en espacio, $\overline{\mathbf{P}}$ es la matriz de covarianza cruzada h-Ln K-c del ensamble, $\overline{\mathbf{P}}_h^0$ y $\overline{\mathbf{P}}_{LnK}^0$ son las matrices de covarianza de h y de Ln K, respectivamente.

4.1.4 Proceso de estimación con el ESH

Con \overline{X} como la media del ensamble y \overline{P} como la estimación de la matriz de covarianza del ensamble, entonces se emplea las ecuaciones de corrección del filtro.

1. Se calcula la ganancia de Kalman K_{k+1} , con $\overline{P} = P_{k+1}^k$ como estimación inicial y H que es la matriz de observación. La matriz H tiene tantas filas como número de mediciones y en la aplicación desarrollada por Herrera (1998), la cual fue extendida y

aplicada en esta tesis, la matriz $_H$ se compone de ceros y unos, ya que supone que los lugares de medición coinciden con los nodos de la malla. La ganancia de Kalman $K_{_{k+1}}$ se calcula con la siguiente ecuación:

$$K_{k+1} = P_{k+1}^{k} H^{T} (HP_{k+1}^{k} H^{T} + R)^{-1}$$
 Ec. 38

2. Se calcula el vector \hat{X}_{k+1}^{k+1} que es el pronóstico del estado, empleando: $\overline{X} = \hat{X}_{k+1}^{k}$ como estimación inicial, la matriz *H*, la ganancia de Kalman K_{k+1} y Z_{k+1} que es el vector $\{z_j, j = 1, 2, ...\}$ de n observaciones o mediciones del estado en el tiempo t en donde j=1...n. El vector pronóstico \hat{X}_{k+1}^{k+1} se calcula con la siguiente ecuación:

$$\hat{X}_{k+1}^{k+1} = \hat{X}_{k+1}^{k} + K_{k+1}(Z_{k+1} - H\hat{X}_{k+1}^{k})$$
 Ec. 39

3. Se calcula la matriz de covarianza actualizada P_{k+1}^{k+1} se calcula con la siguiente ecuación:

$$P_{k+1}^{k+1} = P_{k+1}^k - K_{k+1} H P_{k+1}^k$$
 Ec. 40

El procedimiento descrito (figura 4.1) se realiza igual número de veces que el número de observaciones o mediciones del estado. En los capítulos siguientes se desarrolla la aplicación de esta metodología en diferentes casos de estudio.

Figura 4. 1 Proceso de estimación con el ensamble suavizado.

Capítulo 5. Estimación del parámetro (Ln K) y del estado (h), caso de estudio: Querétaro flujo

5.1 Objetivo (Querétaro flujo)

El objetivo de este caso de estudio consiste en aplicar el ESH para la estimación de parámetros del logaritmo natural de la conductividad hidráulica y para la estimación del estado (carga hidráulica) de un modelo estocástico de flujo de aguas subterráneas y aplicarlo en un caso de estudio sintético (Briseño & Herrera, 2008).

5.2 Descripción del caso de estudio sintético

El caso de estudio se basa en una representación simplificada del acuífero del valle de Querétaro localizado en la parte central de México. El estudio se inició generando un campo aleatorio condicionado de Ln K mediante simulación secuencial gaussiana (anexo A). Posteriormente, se simularon las distribuciones de carga y velocidad obtenidas del campo aleatorio, con un modelo estocástico de flujo. Finalmente con los métodos anteriormente descritos se realizó la estimación del parámetro (Ln K) y del estado (h).

5.2.1 Análisis geoestadístico y simulación secuencial gaussiana.

El análisis geoestadístico se realizó para el parámetro Ln K empleando 55 datos de K provenientes de diferentes pozos localizados en el área de estudio. Mediante al análisis estadístico se determinó quitar 9 datos de K que se consideraron como valores atípicos. Con 46 datos restantes de K se realizó la transformación de estos datos a Ln K.

Posteriormente se realizó la normalización o estandarización de los 46 datos de Ln K y se generó su histograma (figura 5.1). Con los datos normalizados se generó el semivariograma muestral del Ln K y se determinó que el modelo mejor ajustado de acuerdo al criterio de Akaike es el modelo exponencial, el cual se define por medio de un rango efectivo *a* (alcance) y una meseta. En el modelo se utilizó un efecto pepita (nugget) de 0.43, la meseta es de 0.57 y el alcance de 8900, además de una distancia de separación (lag) de 1262.05. La figura 5.1 muestra el semivariograma de los datos normalizados de Ln K utilizando el modelo exponencial.

Figura 5. 1 Histograma (izquierda) y semivariograma ajustado (derecha) de los 46 datos normalizados del Ln K

Con los datos ya conocidos del análisis geoestadístico de Ln de K, se generaron 4000 realizaciones condicionadas (46 datos de Ln K) mediante simulación secuencial gaussiana, empleando una librería del GSLIB llamada SGSIM (Deutsch & Journel, 1998). Una descripción más detallada del método de simulación secuencial gaussiana y de la aplicación del programa SGSIM, se presenta en el Anexo A. La malla para generar las realizaciones del Ln K cubre en su totalidad el área del modelo determinista realizado en PTC. Está malla tiene como origen a las coordenadas (334750.00, 2264250.00), y cuenta con un total de 140 renglones y 147 columnas de forma cuadrada de 200.00 metros. Finalmente con las 4000 realizaciones de Ln K y mediante una transformación se obtuvieron 4000 realizaciones de K. Es importante considerar que para generar simulaciones gaussianas con el programa SGSIM se requiere que la suma del efecto pepita y la meseta sea igual a uno. Por esta

razón, si el modelo del semivariograma no es estandarizado (no es nuestro caso) se deberá proceder a normalizar los datos. Para ello se requiere dividir el valor del efecto pepita entre el valor de la meseta y especificar este valor como el efecto pepita normalizado. La meseta normalizada se obtiene restando a 1, el valor del efecto pepita normalizado.

Figura 5. 2 Límites del modelo (izq.) y malla para obtener las realizaciones del Ln K (der.).

5.2.2 Modelo de flujo de aguas subterráneas.

El caso de estudio sintético cuenta con un modelo determinista de flujo desarrollado en el simulador PTC (Babu D., Pinder, Niemi, Ahlfeld, & Stothooff, 1993), con un área de modelación que corresponde a la zona del acuífero del Valle de Querétaro, igual a 426.87 km². La malla del modelo consiste en una malla triangular que cuenta con 6676 nodos, 13066 elementos y 1 capa (ver figura 5.2). Los parámetros hidráulicos del modelo determinista son: el almacenamiento específico es uniforme en toda la zona de modelación (Ss=0.001). La recarga se considera variable en la zona con rangos de 0.011 a 0.067 m/día en la recarga por lluvia y de 2.45e-05 a 0.0003229 m/día en la recarga por riego. La media de K es igual a 1.63 m/día. En el caso de estudio no se consideró extracción por bombeo. Se tienen cinco zonas con condiciones de frontera de carga asignada, en promedio 100 metros

por debajo de la topografía. El tiempo de modelación corresponde a 63200 días (173 años) para llegar al estado estacionario. El modelo de flujo, se configuró para que genere una sola salida de datos, al final del tiempo de modelación.

5.2.3 Modelo estocástico de flujo de aguas subterráneas.

El modelo estocástico de flujo tiene la misma malla que el modelo determinista de flujo desarrollado en PTC. Las condiciones de frontera de flujo en este modelo se obtuvieron del modelo determinista de flujo, así como todos los demás parámetros, con excepción de la conductividad hidráulica (K). En el modelo estocástico la K se considera como un campo aleatorio espacialmente correlacionado, mediante 4000 realizaciones. Se tienen 33 pozos como con información de los niveles de agua subterránea, además de 95 puntos de estimación definidos como los nodos de una malla uniforme conocida como malla de estimación (ver figura 5.3). De acuerdo a lo explicado anteriormente, es en estos puntos de la malla de estimación en donde se realizan las estimaciones de h y del Ln K. Este modelo se corrió para un solo periodo de salida al igual que el modelo determinista.

5.2.4 Criterio de convergencia.

El criterio de convergencia para limitar número de realizaciones del modelo estocástico se basó en las siguientes ecuaciones:

$$Convergencia_{1(n,n+\Delta)} = \frac{1}{N} \sum_{1}^{N} \left| dif_{(n,n+\Delta)}(i,j) \right|$$
Ec. 41
$$y$$

$$Convergencia_{2(n,n+\Delta)} = \frac{1}{N} \sum_{1}^{N} \frac{\left| dif_{(n,n+\Delta)}(i,j) \right|}{Cov_{(n+\Delta)}(i,j)}$$
Ec. 42

En donde *Cov* es la matriz de covarianza de h y de Ln K, *n* es el número de realización, Δ es el incremento entre las realizaciones y *N* es número de nodos, *i* es el nodo en la realización *n*

y *j* es el nodo en la realización $n+\Delta$.. En el cuadro 5.1 se muestra que la mejor convergencia para la matriz de covarianza de h es la 3800, para la matriz de cruzada h-Ln K se alcanza la convergencia con 3850 realizaciones y para la matriz de covarianza de Ln K se necesitaron 3150 realizaciones. Con base en estos criterios se considera que se alcanzó la convergencia del modelo y se toma como matriz de covarianza a priori, la realización 4000.

Cuadro 5. 1 Comparación de la convergencia de la matriz de covarianza de las realizaciones estocásticas.

	Peor Convergencia		Mejor Convergencia		Realización escogida		
Matriz de Covarianza	Número de realización	Valor (Ec. 42)	Número de realización	Valor (Ec. 42)	Número de realización	Valor (Ec. 42)	
h	100	0.1930	3800	0.0030	4000	0.0030	
h-Ln K	100	0.1390	3850	0.0020	4000	0.0020	
Ln K	100	0.159	3150	0.0030	4000	0.0030	

5.3 Estimación de parámetros con el ensamble suavizado

El ensamble suavizado requiere de datos iniciales y de una matriz de covarianza inicial. En nuestro caso de estudio, se consideró como datos iniciales a la media de la realización 4000 de h calculada con el modelo estocástico y la media de las realizaciones de Ln K. La matriz de covarianza cruzada entre h y Ln K a priori se obtuvo del modelo estocástico. Esta matriz de covarianza cruzada h-Ln K, se empleó como condición inicial al aplicar el ESH. En la figura 5.3 se observan las condiciones iniciales para la aplicación del ESH.

Se realizaron cuatro pruebas condicionadas a diferentes datos (ver cuadro 5.2). En el caso de estudio D, la estimación con el ESH de h y del Ln K, se realizó con 16 datos de h y 17 datos de K.

Figura 5. 3 Malla de estimación (superior izq.), media de h (inferior izq.) y media del Ln K (inferior der.).

Para generar la matriz de covarianza cruzada de h-Ln K se realizó una modificación al programa GWQMonitor (Herrera G. S., 1998). El programa modificado lee el archivo con las realizaciones de K generadas en la malla del SGSIM, y asigna los valores de cada realización de K a los nodos de la malla de PTC. De esta forma se tiene el mismo número de datos de K que el número de nodos de la malla de PTC, posteriormente con cada realización de K, se resuelve el modelo de flujo en PTC y se obtienen igual número de realizaciones de

h. Como se menciona en el capítulo 4 de esta tesis, utilizando promedios de las realizaciones del parámetro Ln K y de la carga hidráulica para cada nodo de la malla de estimación se obtiene la media en espacio-tiempo, la que se propone como la estimación a priori, esta estimación es el vector compuesto por la media de Ln K y h y de la misma manera se calcula su matriz de covarianza cruzada h-Ln K. Las ecuaciones 35 y 36 del capítulo 4 son las que se emplean para calcular la media así como la matriz de covarianza cruzada h-Ln K.

Cuadro 5. 2 Descripción de las pruebas

Caso	Descripción
Α	Estimación de h y del Ln K con el ESH con 33 datos de h.
В	Estimación de h y del Ln K con el ESH con 33 datos de Ln K.
С	Estimación de h y de Ln K con el ESH con 33 datos de h y 33 datos de Ln K.
D	Estimación de h y del Ln K con el ESH con 16 datos de h y 17 datos de Ln K.

Los datos iniciales para realizar la estimación de parámetros con el ESH son:

- La media de las 4000 realizaciones condicionadas de Ln K.
- La media de las 4000 realizaciones de h calculada con el modelo estocástico con datos de las 4000 realizaciones de K.
- La matriz de covarianza cruzada de h-Ln K (256 x 256 nodos). La matriz de covarianza de h está compuesta de 128 x 128 nodos (un tiempo) y la matriz de covarianza de Ln K está compuesta de 128 x 128 nodos (un tiempo).

5.4 Resultados

En análisis de los resultados se realizo usando el EM y el ECM que se calculan con las ecuaciones 29 y 30 del capítulo 4. El error e_i es la diferencia entre la realización 4000 de h y del Ln K y la estimación de h y de Ln K realizada con el ESH en cada uno de los nodos de la malla de estimación y para cada uno de los casos de estudio.

Los resultados se muestran en 6 gráficas para cada caso de estudio, así como la gráfica de la condición inicial de la varianza y de los errores del modelo estocástico. Es importante mencionar que a manera de prueba del método y con fines prácticos, se tomaron como datos reales los valores de la realización número 4000 aunque es importante considerar que se puede emplear cualquier número de realización.

5.4.1 Cálculo de los errores.

Para lograr una mejor comparación de los resultados entre los diferentes casos de estudio se generaron gráficas, así como el cálculo del error medio (EM) y del error cuadrático medio (ECM) que deben ser cercanos a cero, y del error cuadrático medio estándar (ECME), que debe estar cercano a uno (Cuadro 5.3). El cálculo de estos errores se realizó la zona que únicamente incluye el cálculo del área del convexo, que es el área que forma la poligonal de los pozos con datos ubicados en las fronteras (equivalente a un área con 86 nodos).

En la figura 5.8 se presentan las gráficas del 1) el error medio, 2) el error cuadrático medio, calculadas con los errores de los datos estimados de h y del Ln K, en los cuatro casos de estudio. El eje x de estas gráficas es el número de datos requeridos para la estimación en cada caso de estudio, ejemplo; para la estimación de h y Ln K, en los casos A y B se emplearon 33 datos de h y 33 datos de Ln K, respectivamente, y en el caso D se emplearon 16 datos de h y 17 datos de Ln K, es por ello que el eje x en estos casos tiene 33 divisiones, finalmente en el caso C se emplearon 33 datos de h y 50 ello que el eje x tiene 66 divisiones. Las gráficas de la figura 5.8 representan el EM y ECM cuando un dato de h o Ln K es empleado en la estimación.

5.4.2 Bandas de confianza.

Sin entrar al detalle de su cálculo, una de las medidas de dispersión de las distintas estimaciones alrededor del valor real es la llamada desviación estándar del estimador. Una vez la desviación estándar es el llamado margen de error, o nivel de precisión de la estimación, que es el que usualmente se utiliza para obtener intervalos de estimación con

68% de confianza. Así, en la distribución de las 100 estimaciones alrededor del valor real, uno esperaría que 68 de las 100 estimaciones estén entre los valores resultantes de sumar y restar el margen de error (una vez el error estándar) al valor real que estamos estimando. A esto se le llama un intervalo de confianza del 68%. Los valores estimados con el ESH son 256 (128 de h y 128 de Ln K) con 33 datos. Para evaluar las estimaciones se emplean intervalos de confianza del 68% (Jazwinski, 1970). Los resultados para el caso de estudio, se presentan en el cuadro 5.4. Los resultados obtenidos de las bandas de confianza indican que para todos los casos las estimaciones finales caen dentro de los límites de confianza.

Caso de estudio			501		Errores		Varianzas	
		EM (metros)	(metros ²)	ECME	Min (-) (metros)	Max (+) (metros)	Min (-) (metros)	Max (+) (metros)
Área del convexo (86 nodos)				Errores finales Var. finales				
Inicial		-0.195	1.939	1.040	-3.34	2.81	1.50	2.27
Α		-0.373	2.091	1.588	-4.08	2.74	0.24	2.00
В	Ln K	-0.177	1.252	0.681	-3.38	2.83	0.00	2.23
С	-	-0.177	1.252	0.849	-3.38	2.83	0.00	2.27
D		-0.359	1.619	0.967	-4.04	2.53	0.00	2.18
Área del convexo (86 nodos)				Errores finales Var. finales			inales	
Inicial	h	0.293	0.899	0.697	-2.62	1.52	0.03	7.14
Α		-0.049	0.489	0.713	0.00	1.63	0.00	3.67
В		-0.194	0.889	0.955	-2.22	1.64	0.02	6.96
С		-0.040	0.568	0.731	-3.47	1.63	0.00	3.69
D		-0.022	0.574	0.811	-3.26	1.84	0.00	3.81

Cuadro 5. 3 Errores y varianzas estimadas en puntos de estimación.

Figura 5. 4 Gráficas del el error medio (1) y del error cuadrático medio (2) de la estimación de h y Ln K.

Cuadro 5. 4 Resultados de las bandas de confianza (BC) de la estimación en los casos de estudio.

Caso	Valores fue	Valores fuera de la banda de confianza				
0430	BC (+)	BC (-)	Tot.	(de 8448 datos)		
^	1083 datos	1656 datos	2739 datos	5709 datos		
A	12.82%	19.60%	32.42%	67.58%		
в	1058 datos	1387 datos	2445 datos	6003 datos		
В	12.52%	16.42%	28.94%	71.06%		
C	2029 datos	3197 datos	5226 datos	11670 datos		
	12.01%	18.92%	30.93%	69.07%		
	935	1529	2464	5984		
	11.07%	18.10%	29.17%	70.83%		

El número total de datos estimados son 8448 (256 nodos * 33 datos).

Figura 5. 5 Estimación de Ln K.

Figura 5. 6 Varianza de la estimación de Ln K.

Figura 5. 7 Estimación de h.

Figura 5. 8 Varianza de la estimación de h.

5.4.3 Gráficas de distribución espacial de la estimación.

En la figura 5.4 se gráfica la realización 4000 del Ln K, así como la estimación del Ln K realizada con el ESH en los nodos de la malla de estimación de cada uno de los diferentes casos. Del análisis a simple vista de las gráficas de la distribución espacial del Ln K de cada uno de los casos, resulta difícil decidir cuál es el que tiene un mejor comportamiento. Es por ello que para concluir que caso de estudio tiene una mejor estimación se analizan los errores de la estimación. Los errores iniciales de Ln K se determinaron como la diferencia entre la realización 4000 de Ln K y la estimación inicial Ln K en cada uno de los nodos de la malla de estimación. Del análisis de los errores calculados con los datos que se encuentran dentro del área del convexo en los cuatro casos de estudio, se observa que los casos B y C tienen la mejor estimación. Debido a que los casos B y C tienen un EM=-0.177 y un ECM=1.252, así como un ECME=0.681 y 0.849 respectivamente. Los errores de los caso B y D son del orden de -3.38 a 2.83 muy parecidos a los iniciales.

En la figura 5.5 se gráfica la varianza inicial del Ln K, así como la varianza final obtenida con el ESH en los nodos de la malla de estimación en cada uno de los diferentes casos. La figura 5.5 muestra que en los casos A, B y D la mayor varianza se encuentra en la zona noroeste (NW). Esta zona se caracteriza por no tener datos que permitan lograr minimizar la varianza. La varianza inicial del Ln K dentro del área del convexo tiene un rango de 1.50 a 2.27 metros; en todos los casos de estudio se observa que la varianza final disminuyo con respecto a la magnitud de la varianza inicial. En el caso A, la varianza del Ln K no tiene cambios considerables ya que en este caso no se aporta ningún dato del Ln K, que minimice la varianza.

De acuerdo al análisis de la varianza y de los errores, la mejor estimación de Ln K se obtiene en el caso B debido al aporte de datos del Ln K. Sin embargo los casos C y D con el aporte conjunto de datos de Ln K y h también se logra una mejorar en la estimación de Ln K.

En la figura 5.6, se gráfica la realización 4000 de h en 6676 nodos de la malla de PTC, así como la estimación de h, realizada con el ESH en los nodos de la malla de estimación de cada uno de los diferentes casos. La figura 5.6 muestra que los casos A, B y D tienen una buena estimación de h, muy parecida al caso real. Los errores iniciales de h se determinaron como la diferencia entre la realización 4000 de h y la estimación inicial h en cada uno de los

nodos de la malla de estimación. Los errores iniciales dentro del área del convexo tienen un rango de -2.62 a 1.52 metros. De acuerdo al análisis de los errores calculados en el área del convexo, los mejores resultados de la estimación de h de entre los cuatro casos de estudio se presenta en el caso A seguida del caso C. El caso de estudio A tiene un EM=-0.049, un ECM=0.489 cercano a cero y un ECME=0.713 cercano a uno; con errores de 0.00 a 1.63 metros. Esto nos indica que la estimación de h dentro del área del convexo responde a una disminución de los errores, debida a la aportación de datos de h en esta zona.

En la figura 5.7 se gráfica la varianza inicial de la carga h, así como la varianza final realizada con el ESH en los nodos de la malla de estimación de cada uno de los diferentes casos. La figura 5.7 muestra que todos los casos la mayor varianza se encuentra en la zona NW. Esta zona se caracteriza por no tener datos que permiten lograr minimizar la varianza. La varianza inicial dentro del área del convexo tienen un rango de 0.03 a 7.14. La menor varianza de h fuera del área del convexo se presenta en el caso A con un rango de 0 a 15.44, seguida del caso D con un rango de 0 a 15.91. La menor varianza de h en el área del convexo se presenta también en el caso A con un rango de 0 a 3.67, seguida del caso D con un rango de 0 a 15.91. La menor varianza de h en el área del convexo se presenta también en el caso A con un rango de 0 a 3.67, seguida del caso D con un rango de 0, a 3.67, segu

De acuerdo al análisis de la varianza y de los errores, la mejor estimación de h se tiene en el caso A, debido a que este caso aporta 33 datos de h. El caso D, tiene un comportamiento similar al caso A, sin embargo este caso solo aporta 16 datos de h. El caso B tiene una estimación pobre de h debido a que no considera la aportación de ningún dato de h.

Capítulo 6. Estimación del parámetro Ln K y del estado h y c en el caso de estudio: Querétaro flujo y transporte.

6.1 Objetivo (Querétaro flujo y transporte)

El objetivo de este caso de estudio consiste en aplicar el ESH para la estimación del parámetro del logaritmo natural de la conductividad hidráulica y para la estimación del estado (carga hidráulica y concentración) mediante un modelo estocástico de flujo y transporte de aguas subterráneas y aplicarlo en un caso de estudio sintético.

6.2 Descripción del caso de estudio sintético

El caso de estudio se basa en una representación simplificada del acuífero del valle de Querétaro descrito en el capítulo anterior. El trabajo se inició generando 4000 campos aleatorios de K y del Ln K por medio de simulación secuencial gaussiana. Posteriormente, con un modelo estocástico de flujo y con el campo aleatorio de K, se simularon las distribuciones de la h. Con el modelo de transporte se obtuvieron distribuciones de la velocidad así como de concentración. Finalmente se aplicó el ESH para obtener estimaciones de los parámetros de h, Ln K y de c.

Originalmente el experimento se diseñó para que la estimación de parámetros se realizara empleando el modelo determinista y completo de la zona del valle de Querétaro. Sin embargo, cuando se corrió el modelo estocástico con 4000 realizaciones de K, surgió el problema que tardó 12 días en correr para completar las 4000 realizaciones de h y c en una máquina con las características siguientes: procesador Pentium 4 a 2.8 Ghz y 2 Gb de memoria Ram. Por lo que, se decidió generar un ejemplo para la estimación de parámetros

empleando el modelo estocástico completo y generar un modelo reducido, para que las diversas pruebas que se requerían generar en esta tesis doctoral no requirieran 12 días en correr para completar las 4000 realizaciones de h y c. Ambos modelos, el modelo completo y el modelo reducido se describen a continuación así como la comparación entre ambos.

6.3 Modelo completo

6.3.1 Modelo de flujo y transporte de aguas subterráneas (modelo completo)

El modelo determinista y el modelo estocástico de flujo tienen las mismas características que el descrito en el punto 6.1. El modelo de transporte considera un derrame en la zona centro del Valle de Querétaro. El derrame tiene una fuente constante de emanación de 1 y se dispersa durante 50 años en los cuales no tenemos datos, posteriormente consideramos que se tienen datos por medio año tomados cada 15 días, lo que da un total de 13 periodos de tiempo con datos (figura 6.1).

6.3.2 Modelo estocástico de flujo y transporte de aguas subterráneas (modelo completo)

El modelo estocástico de flujo y transporte tiene la misma malla que el modelo determinista de flujo desarrollado en PTC. Las condiciones de frontera de flujo en este modelo se obtuvieron del modelo determinista de flujo, así como todos los parámetros se tomaron como deterministas, con excepción de la conductividad hidráulica. En el modelo estocástico la K se considera como un campo aleatorio espacialmente correlacionado, mediante 4000 realizaciones de simulaciones gaussianas condicionadas a 46 datos de Ln K generadas con SGSIM (para una descripción ver capítulo 5). Para el modelo estocástico de transporte la velocidad se considera como un campo aleatorio caracterizado con las 4000 realizaciones de la matriz de covarianza se componen de la malla de estimación y de los puntos con datos de h, Ln K y c. La malla de estimación se encuentra ubicada dentro de las siguientes coordenadas (X_1 =349202.00, Y_1 =2281420.00 y X_2 =351527.00, Y_2 =2279570.00) y

cuenta con 30 puntos de estimación. Además se cuenta con diversos puntos con datos de Ln K, h y c (figura 6.2). Para los puntos con datos de Ln K se consideran 30 con un solo periodo de salida. Para los datos de h se consideran 30 puntos con un solo periodo de salida debido a que el modelo se encuentra en estado estacionario. Finalmente se cuenta con 35 puntos con datos de c y con 13 periodos de salida. Los puntos con datos o mediciones de h, Ln K y c se ubicaron en el área de estudio distribuidos espacialmente de forma regular.

Figura 6. 1 Zona de derrame de contaminante ubicado en el centro del Valle de Querétaro

Figura 6. 2 Puntos con datos y puntos de estimación.

La figura 6.3 muestra la forma que tiene la matriz de covarianza cruzada h-Ln K-c calculada con el modelo estocástico de flujo y transporte. Es importante mencionar que se realizó una modificación al programa GWQMonitor desarrollado en el lenguaje de programación Fortran para que la generara. La matriz de covarianza de h está conformada por 30 puntos de estimación y por 30 puntos con datos de h para un solo periodo de salida. La matriz de covarianza de Ln K está conformada por 30 puntos de estimación y por 30 puntos de salida. La matriz de covarianza de c está conformada por 30 puntos de puntos de estimación y por 30 puntos con datos de h para un solo periodo de salida. La matriz de covarianza de Ln K para un solo periodo de salida. La matriz de covarianza de c está conformada por 30 puntos de estimación y por 30 puntos con datos de covarianza de c está conformada por 30 puntos de covarianza de c está conformada por 30 puntos de salida.

1 tiempo	60	h	h-Ln K	h-c
1 tiempo	60	Ln K-H [⊺]	Ln K	Ln K-c
13 tie mpos	845	h-c [⊤]	Ln K [⊤] -c	с
		60	60	845

Figura 6. 3 Matriz de covarianza de h, Ln K y de c.

6.3.3 Criterio de convergencia (modelo completo)

Con el criterio de convergencia descrito en la sección 5.2.4 de esta tesis, se determinó la convergencia para la matriz de covarianza de Ln K, h y c. En el cuadro 6.1 y en la figura 6.4 se muestra que la mejor convergencia para la matriz de h es la correspondiente a la realización 3550, para la matriz de Ln K es la 3950 y para la matriz de c es la 3900. Con base en estos criterios se considera que se alcanzó la convergencia del modelo y se tomó como matriz de covarianza a priori la correspondiente a la realización 4000.

Matriz de	Peor Con	vergencia	Mejor Co	vergencia Realización escogida		
Covarianza	Número de realización	Valor	Número de realización	Valor	Número de realización	Valor
h	100	0.0509417	3200	0.0003541	4000	0.0004256
Ln K	100	0.1474872	3950	0.0025943	4000	0.0026733
С	100	0.0001317	3900	0.0000022	4000	0.0000025

Cuadro 6. 1 Comparación de la convergencia de la matriz de covarianza de las realizaciones estocásticas

Figura 6. 4 Gráficas de convergencia de la matriz de h (izq.), de c (centro) y de Ln K (der.).

6.4 Modelo reducido

Para generar el modelo reducido, se requirió establecer las condiciones de frontera del mismo. Para ello se propuso generar un modelo con las mismas características que el modelo de simulación completo con el objetivo de obtener la media de las 4000 realizaciones de h, con las 4000 realizaciones de K previamente generadas con simulación secuencial gaussiana. En la figura 6.5 se observan los nodos del modelo completo que formarán las fronteras del modelo reducido, y en donde se calculó la media de las 4000 realizaciones de h. Las realizaciones de h se calcularon empleando un modelo estocástico de flujo conformado por 104 puntos de estimación correspondientes a las fronteras del modelo reducido. Se empleó el software GWQMonitor desarrollado por Herrera para lograr este objetivo.

6.4.1 Modelo de flujo y transporte de aguas subterráneas (modelo reducido)

El modelo estocástico de flujo y transporte reducido, se recortó del modelo completo con el objetivo de disminuir el tiempo computacional para correr las diferentes pruebas de simulaciones estocásticas. El modelo reducido cuenta con una malla triangular con 1970 nodos, 3858 elementos y 1 capa. Los parámetros hidráulicos son los mismos que los del modelo completo de flujo y transporte, con excepción de las condiciones de frontera. Como condiciones de frontera se asignaron como carga asignada a la media de las 4000 realizaciones de h calculadas en los puntos de estimación obtenidos con el modelo completo.

Figura 6.5 Nodos del modelo completo seleccionados como condiciones de frontera del modelo reducido

6.4.2 Modelo estocástico de flujo y transporte de aguas subterráneas (modelo reducido)

El modelo estocástico de flujo y transporte tiene la misma malla que el modelo determinista de flujo reducido. Las condiciones de frontera de flujo en este modelo se obtuvieron del modelo determinista de flujo, así como todos los parámetros, con excepción de la conductividad hidráulica. En el modelo estocástico la conductividad hidráulica se considera

como un campo aleatorio espacialmente correlacionado, mediante 4000 realizaciones de simulaciones gaussianas generadas con SGSIM. Para el modelo estocástico de transporte la velocidad se considera se considera como un campo aleatorio obtenido con 4000 las realizaciones de la K. La malla de estimación y de los puntos con datos de h, Ln K y c, son los mismos que la malla de estimación del modelo completo. Está compuesta por 30 puntos con datos de h, 30 puntos con datos de Ln K, y de 35 puntos en 13 diferentes tiempos con datos de c (455 datos de c), además de 30 puntos de estimación definidos como los nodos de una malla numérica uniforme. El tamaño de la matriz de covarianza cruzada h-Ln K-c es de 965 x 965 nodos (ver figura 6. 3).

6.4.3 Criterio de convergencia (modelo reducido)

El criterio de convergencia del número de realizaciones del modelo estocástico se basa en las mismas ecuaciones que para el modelo completo (ec. 41 y 42 de la sección 5.2.4 de esta tesis).

Matriz de	Peor Cor	nvergencia	Mejor Co	nvergencia Realización escogida		
Covarianza	Número de realización	Valor	Número de realización	imero de Valor N alización Valor r		Valor
h	100	0.0229161	3200	0.0003541	4000	0.0004256
Ln K	100	0.1474872	3950	0.0025943	4000	0.0026733
С	100	0.0001293	3900	0.0000022	4000	0.0000025

Cuadro 6. 2 Comparación de la convergencia de la matriz de covarianza de las realizaciones estocásticas (modelo reducido).

Figura 6. 6 Gráficas de convergencia de la matriz de h (izq.), de c (centro) y de Ln K (der.).

En el cuadro 6.4 y en la figura 6.6 se muestra que la mejor convergencia para la matriz de h es la correspondiente a la realización 3200, para la matriz de Ln K es la 3950 y para la matriz de c es la 3900. Con base en estos criterios se considera que se alcanzó la convergencia del modelo y se toma como matriz de covarianza a priori la correspondiente a la realización 4000.

6.5 Calculo de los errores (modelo completo y reducido).

El vector de datos para realizar la estimación con el ESH está compuesto por lo siguiente:

- Para h: 30 pozos de muestreo y 30 puntos de estimación para un tiempo (total 60).
- Para Ln K: 30 pozos de muestreo y 30 puntos de estimación para un tiempo (total 60).
- Para c: 35 pozos de muestreo y 30 puntos de estimación de c para 13 tiempos (total 845).

El vector que contiene la información inicial de los puntos de estimación y de muestreo tiene un total de 965 valores.

Caso A. La estimación se realizó empleando 30 datos de h. Conforme se va añadiendo un dato de h, la estimación del vector inicial se va actualizando hasta llegar al dato 30. Por esta razón el número de valores final estimado se obtiene multiplicando el tamaño del vector inicial (965), por el número de datos (30). En el caso A, el número total de valores estimados es 28,950.

Caso B. La estimación se realizó empleando 30 datos de Ln de K. Con forme se va añadiendo un dato de Ln de K, la estimación del vector inicial se va actualizando hasta llegar al dato 30. Por esta razón el número de valores final estimado se obtiene multiplicando el tamaño del vector inicial, por el número de datos. En el caso B, el número total de valores estimados es 28,950.

Caso C. La estimación se realizó empleando 35 datos de c en 13 diferentes tiempo, lo que da un total de 455 datos. Con forme se va añadiendo un dato de c, la estimación del vector inicial se va actualizando hasta llegar al dato 455. Por esta razón el número de valores

estimados se obtiene multiplicando el tamaño del vector inicial, por el número de datos. En el caso c, el número total de valores estimados es 439,075.

El error e_i es calculado mediante la diferencia de los datos de la realización de h y de la h estimada mediante el ESH en los puntos de la malla de estimación. Los errores calculados, en función del número de pozos seleccionados son el error medio y el error cuadrático medio que deben ser cercanos a cero, y el error cuadrático medio estándar, que debe estar cercano a uno. Los errores para los casos de estudio, en ambos modelos (completo y reducido) se presentan en el cuadro 6.2.

Caso de			БОМ	ECME	Erro	Errores		Varianzas	
estu	idio		ECIM	ECIVIE	Min	Мах	Min	Max	
Modelo completo									
	h	-0.965	1.146	1.774	-1.795	0.022	0.497	0.775	
Inicial	Ln K	0.314	1.930	1.051	-2.012	2.823	1.669	1.925	
	С	-0.007	0.003	0.288	-0.313	0.191	0.000	0.056	
		Modelo	Completo		Errores	finales	Var. finales		
Α		0.007	0.008	0.256	0.000	0.520	0.000	0.058	
В	h	-0.837	0.852	1.367	-1.611	-0.040	0.471	0.737	
С		-1.021	1.131	2.109	-1.546	-0.314	0.438	0.707	
Α		-0.078	1.559	1.059	-2.202	2.176	1.016	1.701	
В	Ln K	0.124	1.658	0.924	-2.081	2.742	0.000	1.921	
С		0.288	1.820	1.126	-1.839	2.766	1.107	1.807	
Α	с	-0.004	0.001	0.280	-0.132	0.164	0.000	0.041	
В		-0.011	0.004	0.329	-0.344	1.888	0.000	0.054	
С		-0.002	0.000	0.190	-0.097	0.025	0.000	0.010	
			Мо	delo reducido					
	h	-1.082	1.278	4.010	-1.824	-0.398	0.235	0.366	
Inicial	Ln K	0.314	1.930	1.051	-2.012	2.823	1.669	1.925	
	c	0.000	0.003	0.293	-0.296	0.207	0.000	0.056	
	-	Modelo	Reducido		Errores	finales	Var. f	inales	
Α		0.003	0.009	0.331	-0.210	0.480	0.000	0.048	
В	h	-0.619	0.416	1.915	-1.008	-0.145	0.174	0.294	
С		-1.013	1.061	4.143	-1.448	-0.602	0.202	0.309	
Α		0.109	1.539	1.041	-2.110	2.120	1.006	1.744	
В	Ln K	-0.076	0.481	0.299	-2.153	1.988	0.000	1.692	
С		0.191	1.791	1.147	-2.026	2.677	1.061	1.810	
Α		0.0008	0.001	0.296	-0.100	0.170	0.000	0.042	
В	С	-0.002	0.002	0.306	-0.226	0.193	0.000	0.039	
С		-0.003	0.000	0.098	-0.091	0.034	0.000	0.010	

Cuadro 6. 3 Errores y varianzas estimadas en puntos de estimación.

6.5.1 Bandas de confianza (modelo completo y reducido).

Sin entrar al detalle de su cálculo, una de las medidas de dispersión de las distintas estimaciones alrededor del valor real es la llamada desviación estándar del estimador. Una vez la desviación estándar es el llamado margen de error, o nivel de precisión de la estimación, que es el que usualmente se utiliza para obtener intervalos de estimación con 68% de confianza. Así, en la distribución de las 100 estimaciones alrededor del valor real, uno esperaría que 68 de las 100 estimaciones estén entre los valores resultantes de sumar y restar el margen de error (una vez el error estándar) al valor real que estamos estimando. A esto se le llama un intervalo de confianza del 68%. Para evaluar las estimaciones se emplean intervalos de confianza del 68% (Jazwinski, 1970) El número de valores estimados con el ESH son 480 (32 de h, 32 del Ln K y 416 de c). Para evaluar las estimaciones se emplean intervalos de confianza del 68%. Los resultados de las bandas de confianza para los casos de estudio, en ambos modelos (completo y reducido) se presentan en el cuadro 6.6.

0	Valo	ores fuera de la E	BC Valores dentro				
Caso	BC (+)	BC (-)	Tot.	BC (de 8448 valores)			
Modelo Completo							
А	1083 datos	1656 datos	2739 datos	5709 datos			
	12.82%	19.60%	32.42%	67.58%			
В	1058 datos	1387 datos	2445 datos	6003 datos			
	12.52%	16.42%	28.94%	71.06%			
С	2029 datos	3197 datos	5226 datos	11670 datos			
	12.01%	18.92%	30.93%	69.07%			
	Modelo Reducido						
А	1083 datos	1656 datos	2739 datos	5709 datos			
	12.82%	19.60%	32.42%	67.58%			
В	1058 datos	1387 datos	2445 datos	6003 datos			
	12.52%	16.42%	28.94%	71.06%			
С	2029 datos	3197 datos	5226 datos	11670 datos			
	12.01%	18.92%	30.93%	69.07%			

Cuadro 6. 4 Resultados de las bandas de confianza (BC) de la estimación.

El número total de datos estimados son 8448 (256 nodos * 33 datos).

6.6 Estimación del parámetro y del estado

6.6.1 Resultados de la estimación de parámetros (modelo completo)

El método propuesto para generar estimaciones de h así como de Ln K es mediante el uso del ESH. El objetivo de este punto es probar el ESH para la estimación de parámetros en un caso de estudio. La malla de estimación está compuesta por 30 puntos con datos de h, 30 puntos con datos de Ln K, y de 35 puntos en 13 diferentes tiempos con datos de c (455 datos de c), además de 30 puntos de estimación definidos como los nodos de una malla numérica uniforme. El tamaño de la matriz de covarianza cruzada h-Ln K-c es de 965 x 965 nodos (ver figura 6. 3).

El experimento se inició generando un campo aleatorio de Ln K mediante simulación secuencial gaussiana. Posteriormente, se calcularon las distribuciones de carga, velocidad y concentración obtenidas del campo aleatorio, con un modelo estocástico de flujo y transporte. Finalmente aplicamos el ESH para obtener estimaciones de h, de Ln K y de c.

El ESH requiere de datos iniciales y de una matriz de covarianza inicial. En nuestro caso de estudio, se consideraron como datos iniciales a la media de las 4000 realizaciones de h, a la media de las 4000 realizaciones del Ln K y a la media de las 4000 realizaciones de c, calculadas mediante el modelo estocástico. Como se describió en la sección 6.3.2, la matriz de covarianza a priori se obtuvo del modelo estocástico. Esta matriz de covarianza cruzada de h-Ln K-c, se empleó como condición inicial al aplicar el ESH. Se realizaron tres pruebas condicionadas a diferentes datos. Cada uno de los casos de estudio se describe en el cuadro 6.5.

Caso de estudio	Descripción
Α	Estimación de h, del Ln K y de c con el ESH con 30 datos de h. Nota: El modelo de flujo está en estado estacionario, por lo tanto únicamente se tiene un tiempo para realizar la estimación.
В	Estimación de h, del Ln K y de c con el ESH con 455 datos de c.
С	Estimación de h, del Ln K y de c con el ESH con 30 datos de Ln K.

Cuadro 6. 5 Descripción de las pruebas (modelo completo)

Los resultados se muestran en distintas gráficas para cada caso de estudio, así como la gráfica de la condición inicial de la varianza y de los errores del modelo estocástico. En la figura 6.7 se muestra la estimación de Ln K, calculada con el ESH en los casos de estudio A, B y C, así como la realización 4000 de Ln K designada como caso real. La figura muestra también a la varianza final de Ln K calculada con el ESH en los casos de estudio así como la varianza inicial.

En la figura 6.8 se muestra la estimación de h, calculada con el ESH en los casos de estudio A, B y C, así como la realización 4000 de h designada como caso real. La figura muestra también a la varianza de h calculada con el ESH en los casos de estudio así como la varianza inicial.

En la figura 6.9 se muestra la estimación de c en el tiempo 13, calculada con el ESH en los casos de estudio A, B y C, así como la realización 4000 de c en el tiempo 13 designada como caso real. La figura muestra también a la varianza final de c calculada con el ESH en los casos de estudio así como la varianza inicial.

Figura 6. 7 Estimación de Ln K y varianza de la estimación de Ln K (modelo completo).

Figura 6. 8 Estimación de h y varianza de la estimación de h (modelo completo).

Figura 6. 9 Estimación de c y varianza de la estimación de c (modelo completo).

6.6.2 Resultados de la estimación de parámetros (modelo reducido)

Como se mencionó anteriormente el método propuesto para generar estimaciones de h, de Ln K y de c es mediante el uso del ESH. El objetivo de este punto es probar el ESH para la estimación de parámetros en un caso de estudio. La malla de estimación tiene las mismas características que las del modelo completo. Compuesta por 30 puntos con datos de h, 30 puntos con datos de Ln K, y de 35 puntos en 13 diferentes tiempos con datos de c (455 datos de c), además de 30 puntos de estimación definidos como los nodos de una malla numérica uniforme. El experimento se inició generando un campo aleatorio de Ln K mediante simulación secuencial gaussiana. Posteriormente, se calcularon las distribuciones de h, velocidad y c, con un modelo estocástico de flujo y transporte. Finalmente aplicamos el ESH para obtener estimaciones de h, de Ln K y de c.

El ESH requiere de datos iniciales y de una matriz covarianza inicial. En nuestro caso de estudio, se consideró como datos iniciales a la media de las 4000 realizaciones de h, a la media de las 4000 realizaciones del Ln K y a la media de las 4000 realizaciones de c, calculadas mediante el modelo estocástico. La matriz de covarianza a priori se obtuvo del modelo estocástico. Esta matriz de covarianza cruzada de h-Ln K-c, se empleó como condición inicial al aplicar el ESH. Se realizaron las mismas tres pruebas condicionadas a diferentes datos que en el modelo completo

Los resultados de la estimación, así como la gráfica de la condición inicial de la varianza y de los errores del modelo estocástico, se muestran en las figuras 6.10, 7.11 y 7.12 para el Ln K, h y c, respectivamente. En la figura 6.10 se muestra la estimación de Ln K, calculada con el ESH en los casos de estudio A, B y C, así como la realización 4000 de Ln K designada como caso real. La figura también muestra la varianza final de Ln K calculada con el ESH en los casos de estudio así como la varianza inicial.

En la figura 6.11 se muestra la estimación de h, calculada con el ESH en los casos de estudio A, B y C, así como la realización 4000 de h designada como caso real. La figura también muestra la varianza de h calculada con el ESH en los casos de estudio así como la varianza inicial. En la figura 6.12 se muestra la estimación de c en el tiempo 13, calculada con el ESH en los casos de estudio A, B y C, así como la realización 4000 de c en el tiempo

13 designada como caso real. La figura también muestra la varianza final de c calculada con el ESH en los casos de estudio así como la varianza inicial.

Figura 6. 10 Estimación de Ln K y varianza de la estimación de Ln K (modelo reducido).

Figura 6. 11 Estimación de h y varianza de la estimación de h (modelo reducido).

Figura 6. 12 Estimación de c y varianza de la estimación de c (modelo reducido).

6.7 Comparación de la convergencia entre el modelo completo y el reducido.

En el cuadro 6.6 se muestra la realización inicial, la realización con el valor más bajo del error identificada como la mejor realización y la realización 4000 de la covarianza, como la empleada para realizar la estimación de parámetros empleando ambos modelos. Como se muestra en el cuadro, los valores de las realizaciones son muy semejantes.

		Modelo Completo		Modelo I		
Convergencia	Covarianza de	Realización No.	Valor	Realización No.	Valor	Error
	h	100	0.050941793	100	0.022916183	0.02803
Inicial	Ln K	100	0.147487294	100	0.147487294	0.00000
	с	100	0.000131707	100	0.000129318	0.00000
	h	3550	0.000572160	3200	0.000354173	0.00022
Mejor	Ln K	3950	0.002594303	3950	0.002594303	0.00000
	С	3900	0.000002050	3900	0.000002234	0.00000
Empleada en el modelo	h	4000	0.000656715	4000	0.000425627	0.00023
	Ln K	4000	0.002673364	4000	0.002673364	0.00000
estocástico	С	4000	0.000002433	4000	0.000002592	0.00000

Cuadro 6. 6 Comparación de la convergencia entre el modelo completo y el reducido

6.8 Comparación de las realizaciones de h, Ln K y c entre el modelo completo y el reducido.

El criterio para comparar las realizaciones de h, Ln K y c del modelo estocástico completo y el reducido se basa en la siguiente ecuación:

$$PorcenDif = \frac{1}{n} \sum_{i=1}^{n} \frac{DatMod_{Completo}(i) - DatMod_{Reducido}(i)}{DatMod_{Completo}(i)}$$
Ec. 43

Donde

PorcenDif =Porcentaje de cambio entre modelos. $DatMod_{Completo}(i) =$ Estimación del modelo completo en el nodo *i* hasta n (dato para h, Ln K y c) $DatMod_{Reducido}(i) =$ Estimación del modelo reducido en el nodo *i* hasta n (dato para h, Ln K y c) n = número total de *i* nodos de la malla de la matriz de covarianza.

En las figuras 6.13, 6.14 y 6.15 se muestra la comparación de las covarianzas obtenidas con el modelo estocástico completo y el modelo estocástico reducido. Las figuras muestran que las covarianzas de Ln K, h y c son muy similares y convergen de forma muy similar. Es por ello que la realización 4000 de la covarianza Ln K-h-c se considera como adecuada para realizar la estimación de parámetros empleando ambos modelos.

Figura 6. 14 Comparación de la realización de c entre el modelo completo y el reducido.

Número de realizaciones

1.00E-03 8.00E-04 6.00E-04 4.00E-04 PorcenDif 2.00E-04 -1.50E-18 -2.00E-04 9 17 25 - 33-41 49 57 65 73 -4.00E-04 -6.00E-04 -8.00E-04 -1.00E-03

Figura 6. 15 Comparación de la realización de Ln K entre el modelo completo y el reducido.

Número de realizaciones

Capítulo 7. Estimación del parámetro Ln K y del estado h y c, en el caso de estudio: Pozo de bombeo con fuente de contaminante

7.1 Objetivo

El objetivo de este caso consiste en aplicar el ESH para la estimación del logaritmo natural de la conductividad hidráulica, de la carga hidráulica y de la concentración en un caso de estudio sintético, que incluye la presencia de un pozo de bombeo en tres diferentes escenarios de heterogeneidad del medio la cual se representa con la varianza de la conductividad. En el Caso 1 se generaron 3000 realizaciones del Ln K con una media constante de K y diferentes valores de la varianza del Ln K (\bar{x}_k =1.6 y $\sigma^2_{Ln K}$ =0.5, 1.0 y 1.5) con el método conocido como simulación secuencial gaussiana. En el Caso 2 se generaron 1000 realizaciones del Ln K (\bar{x}_k =1.6 y $\sigma^2_{Ln K}$ =0.5, 1.0 y 1.5) con el método conocido como simulación secuencial gaussiana. En el Caso 2 se generaron 1000 realizaciones del Ln K (\bar{x}_k =1.6 y $\sigma^2_{Ln K}$ =0.5, 1.0 y 1.5) con el método conocido como simulación secuencial gaussiana. En el Caso 2 se generaron 1000 realizaciones del Ln K (\bar{x}_k =1.6 y $\sigma^2_{Ln K}$ =0.5, 1.0 y 1.5) con el método conocido como simulación secuencial gaussiana. En el Caso 2 se generaron 1000 realizaciones del Ln K (\bar{x}_k =1.6 y $\sigma^2_{Ln K}$ =0.5, 1.0 y 1.5) con el método conocido como Latin Hypercube Sampling. En el Caso 5 se realizó una comparación entre los dos métodos (SGSIM y LHS) empleados para generar las realizaciones del Ln K (Briseño & Herrera, 2010).

7.2. Descripción del caso de estudio

El caso de estudio se basó en una representación simplificada de un caso real. En el experimento se consideró un solo pozo de bombeo, ubicado en la parte central de la zona de estudio y una zona de emanación de contaminante al oeste de la zona de estudio. El trabajo se inició generando campos aleatorios no condicionados de K y del Ln K por medio de SGSIM y LHS. Posteriormente, con un modelo estocástico de flujo y con el campo aleatorio de K, se simularon las distribuciones de la h. Con el modelo de transporte se obtuvieron

distribuciones de la velocidad así como de concentración. Finalmente se aplicó el ESH para obtener estimaciones de los parámetros de h, Ln K y de c.

7.2.1 Realizaciones del Ln K empleando Latin Hypercube

El método de muestreo por hipercubo latino conocido como técnica de muestreo de enrejado (lattice) se emplea para generar realizaciones Monte Carlo y permite la reducción del esfuerzo computacional para realizar simulaciones estocásticas de flujo y de transporte del agua subterránea. La técnica LHS consiste en la selección de los parámetros y variables a muestrear, la asignación de distribuciones de probabilidad a cada uno de ellos, la división de cada distribución en un número determinado a priori de intervalos equiprobables, la generación de una muestra aleatoria dentro de cada intervalo y para cada variable, y el apareamiento aleatorio de muestras entre variables, de modo de obtener vectores de valores de entrada, uno por cada intervalo (Nuñes & Barón, 1999). Para una explicación más detallada del método LHS consúltese a Simuta-Champo y Herrera.(2010).

Para verificar que el número de las realizaciones del modelo estocástico garantizaran la convergencia de la solución, se establecieron los criterios de convergencia para la comparación de medias $RECM_{Media}$ y para la comparación de la covarianza del error $RECM_{Cav}$. Estos criterios se basan en las siguientes ecuaciones:

$$RECM_{Media} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \sum e_j^2}$$
 Ec. 44

en donde e_j es la diferencia entre la media de las realizaciones y el valor real en el punto j, de la malla de estimación correspondiente a una realización de Ln K, h y c, y N es el número total de puntos que conforman la malla de estimación.

*RECM*_{Cov} =
$$\sqrt{\frac{1}{N^2} \sum_{i=1}^{N} \sum_{j=1}^{N} e_{ij}^2}$$
 Ec. 45

donde e_{ij} es la diferencia entre la covarianza calculada de las realizaciones y la covarianza real correspondiente a la entrada *i*, *j* de las matrices.

El cuadro 7.1 muestra la *RECM*_{Media} y la *RECM*_{Cov} de las realizaciones de Ln K calculadas con el método LHS. Con base en estos criterios se consideró que 1000 realizaciones fueron suficientes (ver figura 7.1) y se tomó como matriz de covarianza a priori para continuar con la estimación de parámetros a la realización número 1000.

Figura 7. 1 Gráfica de convergencia de las realizaciones de Ln K calculadas con el método LHS.

Número de realizaciones
No. de realización	RECM Media	RECM _{Cov}	No. de realización	RECM Media	RECM _{Cov}
100	0	0.09316	1100	0	0.00161
200	0	0.05981	1200	0	0.00149
300	0	0.04387	1300	0	0.00139
400	0	0.03283	1400	0	0.00126
500	0	0.02424	1500	0	0.00119
600	0	0.01579	1600	0	0.00113
700	0	0.00349	1700	0	0.00106
800	0	0.00219	1800	0	0.00101
900	0	0.00196	1900	0	0.00094
1000	0	0.00176	2000	0	0.0009

Cuadro 7. 1 Convergencia de las realizaciones de Ln K calculadas con LHS

7.2.2 Realizaciones del Ln K empleando SGSIM

Con el método conocido como SGSIM (Deutsch & Journel, 1998) se generaron 3000 realizaciones no condicionadas de Ln K. Una descripción más detallada del método SGSim se presenta en el anexo A. La malla para generar las realizaciones de Ln K, cubre en su totalidad el área del modelo determinista realizado en PTC (Babu D., Pinder, Niemi, Ahlfeld, & Stothooff, 1993).

7.2.3 Modelo determinista de flujo y transporte de aguas subterráneas

El caso de estudio sintético tiene un área de modelación de 700 x 700 metros. La malla del modelo de elemento finito es triangular (densidad de 30 metros). Se encuentra ubicada dentro de las coordenadas X_1 =500.00, Y_1 =200.00 y X_2 =1200.00, Y_2 =900.00. Tiene 702 nodos y 1306 elementos. En el estudio se considera un solo pozo de bombeo, ubicado en la parte central de la zona de estudio (985.6,539.4). El gasto de extracción es variable en los seis tiempos considerados (5600, 5800, 6000, 6200, 6400 y 6600 m³/día).

El modelo de transporte de contaminante considera una zona de emanación de contaminante al oeste de la zona de estudio (ver figura 7.2). El contaminante tiene un flujo de emanación de 100 m³/día. El tiempo de modelación para flujo y transporte es de 12 años (4380 días). El flujo y el transporte se reportan cada dos años (730 días).

7.2.4 Modelo estocástico de flujo y transporte de aguas subterráneas

Con el modelo estocástico de flujo y con las realizaciones del Ln K (determinadas con SGSIM o LHS) se simularon las distribuciones de h y con el modelo de transporte se obtuvieron distribuciones de la velocidad así como de la concentración. Mediante la simulación estocástica se generó la matriz de covarianza cruzada de Ln K-h-c con un tamaño de 1040 nodos. Los nodos de la matriz de covarianza corresponden para cada tiempo (6 tiempos) a los nodos de la malla de estimación más los puntos con datos de Ln K, h y c empleados para generar la estimación de parámetros empelando el ESH. La malla de estimación es una malla uniforme compuesta por 56 nodos dispersos en toda la zona de estudio y con una separación aproximada de 90 metros entre los nodos. Es en esta malla en donde se realiza la estimación de parámetros. En las fronteras del modelo, ubicadas en la zonas este y oeste se consideró carga asignada con valores de 985 y 984 metros, respectivamente.

La matriz de la covarianza cruzada Ln K - h - C está asociada con (figura 7.2):

- 25 datos de Ln K, 48 puntos de estimación y solo un tiempo de salida (73 datos de Ln K).
- 25 datos de h, 48 puntos de estimación y seis tiempos de salida (438 datos de h).
- 25 datos de c, 48 puntos de estimación y seis tiempos de salida (438 datos de c).

En la Figura 7.2 se muestra la distribución de los 25 datos de Ln K (triangulo), 25 datos de h (círculo), 25 datos de c (cuadrado) y de los 48 puntos de estimación (cruces).

A continuación se describen los resultados de los diversos casos de estudio para la estimación de Ln K, h y c, en los que se emplea como matrices de covarianza a priori a las calculadas con realizaciones de Ln K (SGSIM y LHS). Los resultados que se muestran a continuación para cada caso de estudio son los mapas de estimación inicial, y final de Ln K, h y c, así como el cálculo del Error medio (EM) y el error cuadrático medio (ECM).

Figura 7. 2 Puntos de estimación y de los datos de h, K y c

7.2.5 Calculo del error medio (EM) y del Error cuadrático medio (ECM)

El análisis de los resultados de la estimación de Ln K, h y c empleando el ESH en los diversos casos de estudio se realizó mediante el cálculo del Error Medio, del Error Cuadrático Medio, así como del porcentaje de reducción (%Red) del EM y del ECM para el Ln K, h y c, así como sus respectivas gráficas.

El porcentaje de reducción del error (%Red) se obtuvo mediante la siguiente fórmula:

$$\% RedEM = \left[1 - \frac{|EM_{T_i}|}{|EM_{T_0}|}\right] * 100\%$$
 Ec. 46

en donde %*RedEM* = Porcentaje de reducción del error; EM_{T_i} = error medio de la estimación en el tiempo *i*; EM_{T_0} = Error medio inicial de la estimación en el tiempo *i*=0. El signo negativo en el %Red del error indica una disminución del error y el signo positivo indica un aumento. Los resultados de todos los casos de estudio de este capítulo así como los resultados del capítulo 8 se presentan en los cuadros B1 al B30 del anexo B. En cada cuadro del anexo B se muestra en la parte superior el EM y su %Red así como el ECM y su %Red para el Ln K en función del número de datos y tiempo. Los resultados de la estimación de h y c también se muestran en el cuadro en función del número y tipo de datos (h y/o c), y de la estimación en el presente, pasado y futuro (filtrado, suavizado y predicción).

7.3 Estimación de parámetros empleando simulación secuencial gaussiana (Caso 1).

El Caso de estudio 1, emplea el método de simulación secuencial gaussiana para generar 3000 realizaciones de Ln K con media de K constante (\bar{x}_k =1.6) y para cada uno de los tres valores de varianza del Ln K (Caso 1.1_{verdadero}, 1.2_{verdadero} y 1.3_{verdadero} con $\sigma^2_{Ln K}$ =1.0; Caso 1.4 con $\sigma^2_{Ln K}$ =0.5 y Caso 1.5 con $\sigma^2_{Ln K}$ =1.5). Usando cada realización del Ln K (para cada uno de los tres valores de varianza), se empleó el modelo estocástico para producir una realización de la carga hidráulica y/o de la concentración del contaminante. El total de las

realizaciones se empleó para obtener la media del estado (carga hidráulica y concentración), así como la matriz de covarianza cruzada del Ln K–h-c. Empleando el ESH, para cada caso de estudio se obtendrá la estimación del Ln K y del estado, utilizando como estimación y covarianza a priori a la media de las realizaciones y su correspondiente matriz de covarianza cruzada espacio-temporal. El cuadro 7.2 muestra las alternativas de estudio del caso 1.

Caso	Descripción	Varianza	Media	Matriz de covarianza
1.1 _{verdadero}	Estimación con datos de h	$\sigma^{2}_{Ln K} = 1.0$		Cov SGSIM
1.2 verdadero	Estimación con datos de c	σ ² _{Ln K} = 1.0		Cov SGSIM
1.3 verdadero	Estimación con datos de h y c	σ ² _{Ln K} = 1.0	\bar{x}_{k} =1.6	Cov SGSIM
1.4	Estimación con datos de h y c	$\sigma^{2}_{Ln K} = 0.5$		Cov SGSIM
1.5	Estimación con datos de h y c	$\sigma^{2}_{Ln K} = 1.5$		Cov SGSIM

Cuadro 7. 2 Descripción del Caso de estudio 1 (Caso correcto SGSIM)

7.3.1 Estimación de parámetros y estado, Caso 1.1, 1.2 y 1.3

En estos casos de estudio, la estimación de parámetros con el ESH se realizó empleando 25 datos de h para cada tiempo (Caso_{verdadero} 1.1), 25 datos de c para cada tiempo (Caso 1.2_{verdadero}) y empleando conjuntamente 25 datos de h y 25 datos de c para cada tiempo (Caso 1.3_{verdadero}), usando en cada uno de los tres casos, la misma matriz de covarianza, generada con realizaciones de Ln K (SGSIM) con \bar{x}_k =1.6 y $\sigma^2_{Ln K}$ =1.0. A continuación se presentan los mapas de la estimación inicial (o a priori), de la estimación real (realización de Ln K, h o c) así como de la estimación final realizada con el ESH para Ln K, h y c, a partir de datos de h, c y h y c. La estimación real, es el campo de Ln K correspondiente a la realización 4000 obtenida con SGSim, y al campo de h y c calculada con la realización 4000 de Ln K. En el Anexo B se presenta en diversos cuadros el cálculo del error medio y de la raíz del error cuadrático medio de Ln K, h y c para cada caso de estudio.

Figura 7. 3 Estimación de Ln K con datos de h, c y h y c (Caso 1.1, 1.2 y 1.3 con $\sigma^2_{Ln K}$ =1.0 y \overline{x}_k =1.6)

129

Figura 7. 4 Estimación de h con datos de h, c y h y c (Caso 1.1, 1.2 y 1.3 con $\sigma^2_{Ln K}$ =1.0 y \overline{x}_k =1)

Figura 7. 5 Estimación de c con datos de h, c y h y c (Caso 1.1, 1.2 y 1.3 con $\sigma_{LnK}^2=1.0$ y $\overline{x}_k=1.6$)

7.3.2 Resultados Caso 1.1, 1.2 y 1.3

El análisis de resultados se llevo a cabo con los mapas de la estimación inicial, real y generada con el ESH para el Ln K, h y c, así como con el cálculo del EM y del ECM de la estimación. Los resultados del cálculo del EM y del ECM para el Ln K, h y c se presentan en el anexo B.

Usando el ESH para la estimación de parámetros se observa en los casos 1.1_{verdadero} (aporte de datos de h), 1.2_{verdadero} (aporte de datos de c) y 1.3_{verdadero} (aporte de datos de h y c) que el ECM inicial del Ln K (el ECM inicial se calcula como el cuadrado de la diferencia entre la estimación a priori y la realización 800 del Ln K, entre el número total de puntos de estimación) disminuye con la aportación de datos de h y c. Siendo el caso 1.3 el que tiene una mayor disminución de el ECM inicial de Ln K la del modelo; esto nos indica que cuando existe aporte de datos de h y c de forma conjunta se logra una mejor estimación del Ln K. Del análisis a simple vista de los mapas de la estimación del Ln K realizada con el ESH tiene una estimación muy parecida a la real, sin embargo en todos los casos el ECM inicial de Ln K disminuye, lo que nos indica que la estimación de Ln K mejora con la aportación de datos y empelando el ESH.

Usando el ESH en la estimación del estado, se observa en el caso 1.1 que los datos de h contribuyen a que el ECM inicial de h disminuya. De la misma forma se observa en el caso 1.2 que los datos de c contribuyen a que el ECM inicial de c disminuya. Finalmente se observa que cuando se emplean de forma conjunta datos de h y c en la estimación del estado (caso 1.3), el ECM inicial de h disminuye más que cuando únicamente existe aportación de datos de h. Sin embargo en el ECM inicial de c disminuye más cuando existe únicamente aporte de datos de c, que cuando se emplean de forma conjunta datos de h y c. Del análisis de los mapas de la estimación inicial y real de h (figura 7.4), así como la estimación de h obtenida del ESH en los 6 tiempos, se observa que en el caso 1.1 y 1.3 el aporte de los datos de h en cada uno de los 6 tiempos, mejora la estimación inicial hasta llegar a ser muy parecida a la estimación real de h. En el caso 1.2 el aporte de los datos de c en cada uno de los 6 tiempos no mejora la estimación inicial de h.

Del análisis de los mapas de la estimación inicial y real de c (figura 7.5), así como la estimación de c obtenida con el ESH en los 6 tiempos, se observa que en el caso 1.1 el aporte de los datos de h en cada uno de los 6 tiempos, no mejora la estimación inicial de c. En el caso 1.2 y 1.3 el aporte de los datos de c en cada uno de los 6 tiempos si mejora la estimación inicial de c, hasta llegar a ser muy parecida a la estimación real de c.

7.3.3 Estimación de parámetros y variables. Casos 1.3, 1.4 y 1.5

En estos casos de estudio la estimación de parámetros con el ESH se realizó empleando matrices de covarianza diferentes, las cuales se generaron con realizaciones de Ln K (SGSIM) con \bar{x}_k =1.6 y σ_{LnK}^2 =1.0 (Caso 1.3_{verdadero}), σ_{LnK}^2 =0.5 (caso 1.4), σ_{LnK}^2 =1.5 (caso 1.5). A continuación se presentan los mapas de la estimación inicial (o a priori), la estimación real (realización de Ln K, h o c) así como la estimación final realiza con el ESH para Ln K, h y c. En el Anexo B se presenta en diversos cuadros el cálculo del error medio y de la raíz del error cuadrático medio de Ln K, h y c para cada caso de estudio.

Figura 7. 6 Estimación de Ln K con datos de h y c (Caso 1.3, 1.4 y 1.5 con σ 2Ln K=1.0, 0.5, 1.5 y \overline{x}_k =1.6)

Figura 7. 7 Estimación de h y c con datos de h y c (Caso 1.3 con $\sigma_{LnK}^2 = 1.0$ y $\overline{x}_k = 1.6$)

Figura 7. 8 Estimación de h y c con datos de h y c (Caso 1.4 con $\sigma^2_{LnK} = 0.5$ y $\bar{x}_k = 1.6$)

Figura 7. 9 Estimación de h y c con datos de h y c (Caso 1.5 con σ^2_{LnK} =1.5 y \overline{x}_k =1.6)

7.3.4 Resultados (Caso 1.3, 1.4 y 1.5)

El análisis de resultados se llevo a cabo con los mapas de la estimación inicial, real y en cada tiempo del parámetro de Ln K y del estado (h y c), así como con el cálculo del Em y del ECM. Los resultados del cálculo del EM y del ECM para el Ln K, h y c se presentan en el anexo B.

Usando el ESH para la estimación de parámetros con Varianzas de Ln K diferentes (Caso 1.3 $\sigma_{Ln K}^2 = 1.0$, Caso 1.4 $\sigma_{Ln K}^2 = 0.5$, y Caso 1.5 $\sigma_{Ln K}^2 = 0.5$) se observa en todos los casos que el aporte de forma conjunta de datos de h y c en cada uno de los 6 tiempos, contribuyen a que el ECM inicial de Ln K disminuya (figuras 7.7, 7.8 y 7.9). El caso de estimación con datos únicamente de h o c (Caso 1.1_{verdadero}, Caso 1.2_{verdadero}, Caso 1.3_{verdadero}) se presenta en las figuras 7.3, 7.4 y 7.5.

Del análisis a simple vista de los mapas de la estimación del Ln K en los casos 1.3, 1.4 y 1.5 (figura 7.6), resulta difícil decir que la estimación de Ln K realizada con el ESH tiene una estimación muy parecida a la real, sin embargo en todos los casos el ECM inicial de Ln K disminuye, lo que nos indica que la estimación de Ln K mejora con la aportación de datos y empelando el ESH.

Usando el ESH para la estimación del estado con Varianzas de Ln K diferentes (Caso 1.3 $\sigma_{Ln\,K}^2 = 1.0$, Caso 1.4 $\sigma_{Ln\,K}^2 = 0.5$, y Caso 1.5 $\sigma_{Ln\,K}^2 = 0.5$) se observa en todos los casos que el aporte de forma conjunta de datos de h y c en cada uno de los 6 tiempos, contribuyen a que el ECM inicial de h y c disminuya (figuras 7.7, 7.8 y 7.9).

Del análisis de los mapas de la estimación inicial y real de h y c, así como la estimación de h y c obtenida del ESH en los 6 tiempos, se observa en los casos 1.3, 1.4 y 1.5 que la estimación realizada con el ESH y el aporte de los datos de h y c, mejora la estimación inicial de h y c hasta llegar a ser muy parecida a la estimación real de h y c.

7.4 Estimación de parámetros empleando Latin Hypercube (Caso 2)

El Caso de estudio 2, emplea el método de LHS para generar 3000 realizaciones de Ln K con media de K constante (\bar{x}_k =1.6) y para cada uno de los tres valores de varianza del Ln K (Caso 2.1_{verdadero}, 2.2_{verdadero} y 2.3_{verdadero} con $\sigma^2_{Ln K}$ =1.0; Caso 2.4 con $\sigma^2_{Ln K}$ =0.5 y Caso 2.5 con $\sigma^2_{Ln K}$ =1.5). Usando cada realización del Ln K (para cada uno de los tres valores de varianza), se empleó el modelo estocástico para producir una realización de la carga hidráulica y/o de la concentración del contaminante. El total de las realizaciones se empleó para obtener la media del estado (carga hidráulica y concentración), así como la matriz de covarianza cruzada del Ln K–h-c. Empleando el ESH, para cada caso de estudio se obtendrá en el punto siguiente, la estimación del Ln K y del estado, utilizando como estimación y covarianza a priori a la media de las realizaciones y su correspondiente matriz de covarianza cruzada espacio-temporal. El cuadro 8.3 muestra las alternativas de estudio del caso 1.

Caso	Descripción	Varianza	Media	Matriz de covarianza
2.1 verdadero	Estimación con datos de h	$\sigma^2_{LnK} = 1.0$	-	Cov LHS
2.2 verdadero	Estimación con datos de c	$\sigma^2_{\text{LnK}} = 1.0$		Cov LHS
2.3 verdadero	Estimación con datos de h y c	$\sigma^2_{LnK} = 1.0$	$\bar{x}_{k} = 1.6$	Cov LHS
2.4	Estimación con datos de h y c	$\sigma^2_{LnK} = 0.5$		Cov LHS
2.5	Estimación con datos de h y c	$\sigma^2_{LnK} = 1.5$		Cov LHS

Cuadro 7. 3 Descripción del Caso de estudio 1 (Caso correcto SGSIM)

7.4.1 Estimación de parámetros y estado, Caso 1.1, 1.2 y 1.3

En estos casos de estudio, la estimación de parámetros con el ESH se realizó empleando 25 datos de h para cada tiempo (Caso_{verdadero} 2.1), 25 datos de c para cada tiempo (Caso 2.2_{verdadero}) y empleando conjuntamente 25 datos de h y 25 datos de c para cada tiempo (Caso 2.3_{verdadero}), usando en cada uno de los tres casos, la misma matriz de covarianza, generada con realizaciones de Ln K (LHS) con \bar{x}_k =1.6 y $\sigma^2_{Ln K}$ =1.0. A continuación se presentan los mapas de la estimación inicial, de la estimación real (realización de Ln K, h o

c) así como de la estimación final realizada con el ESH para Ln K, h y c, a partir de datos de h, c y h y c. La estimación inicial de Ln K es un campo uniforme de Ln K con \bar{x}_k =1.6 y $\sigma^2_{Ln K}$ =1.0, y la estimación real, es el campo de Ln K correspondiente a la realización 800 obtenida con LHS, y al campo de h y c calculada con la realización 800 de Ln K. En el Anexo B se presentan en diversos cuadros el cálculo del error medio y de la raíz del error cuadrático medio de Ln K, h y c para cada caso de estudio.

Figura 7. 11 Estimación de h con datos de h, c y h y c (Caso 2.1, 2.2 y 2.3 con σ^2_{LnK} =1.0 y \overline{x}_k =1.6)

Figura 7. 12 Estimación de c con datos de h, c y h y c (Caso 2.1, 2.2 y 2.3 con $\sigma_{LnK}^2 = 1.0$ y $\overline{x}_k = 1.6$)

7.4.2 Resultados (Caso 2.1, 2.2 y 2.3)

El análisis de resultados se llevo a cabo con los mapas de la estimación inicial, real y generada con el ESH para el Ln K, h y c, así como con el cálculo del EM y del ECM de la estimación. Los resultados del cálculo del EM y del ECM para el Ln K, h y c se presentan en el anexo B.

Usando el ESH para la estimación de parámetros se observa en los caso 2.1_{verdadero} (aporte de datos de h), 2.2_{verdadero} (aporte de datos de c) y 2.3_{verdadero} (aporte de datos de h y c) que el ECM inicial (el ECM inicial se calcula como el cuadrado de la diferencia entre la estimación a priori y la realización 800 del Ln K, entre el número total de puntos de estimación) del Ln K disminuye con la aportación de datos de h y c, siendo el caso 2.3 el que tiene una mayor disminución de el ECM inicial de Ln K; esto nos indica que cuando existe aporte de datos de h y c de forma conjunta se logra una mejor estimación del Ln K.

Del análisis a simple vista de los mapas de la estimación del Ln K en los casos 2.1, 2.2 y 2.3 (figura 7.10), resulta difícil decir que la estimación de Ln K realizada con el ESH tiene una estimación muy parecida a la real, sin embargo en todos los casos el ECM inicial de Ln K disminuye, lo que nos indica que la estimación de Ln K mejora con la aportación de datos y empelando el ESH.

Usando el ESH en la estimación del estado, se observa en el caso 2.1 (figura 7.11) que los datos de h contribuyen a que el ECM inicial de h disminuya. De la misma forma se observa en el caso 2.2 que los datos de c contribuyen a que el ECM inicial de c disminuya. Finalmente se observa que cuando se emplean de forma conjunta datos de h y c en la estimación del estado (caso 2.3), el ECM inicial de h disminuye más que cuando únicamente existe aportación de datos de h. Lo mismo ocurre con la estimación de c, se observó que el ECM inicial de c disminuye más empelando datos de h y c de forma conjunta, que cuando únicamente existe aportación de datos de c.

Del análisis de los mapas de la estimación inicial y real de h (figura 7.11), así como la estimación de h obtenida del ESH en los 6 tiempos, se observa que en el caso 2.1 y 2.3 el aporte de los datos de h en cada uno de los 6 tiempos, mejora la estimación inicial hasta

llegar a ser muy parecida a la estimación real de h. En el caso 2.2 el aporte de los datos de c en cada uno de los 6 tiempos no mejora la estimación inicial de h. Del análisis de los mapas de la estimación inicial y real de c (figura 7.12), así como la estimación de c obtenida con el ESH en los 6 tiempos, se observa que en el caso 2.1 el aporte de los datos de h en cada uno de los 6 tiempos, no mejora la estimación inicial de c. En el caso 2.2 y 2.3 el aporte de los datos de c en cada uno de los 6 tiempos si mejora la estimación inicial de c, hasta llegar a ser muy parecida a la estimación real de c.

7.4.3 Estimación de parámetros y estado, Caso 2.3, 2.4 y 2.5

En estos casos de estudio la estimación de parámetros con el ESH se realizó empleando matrices de covarianza diferentes, las cuales se generaron con realizaciones de Ln K (LHS) con \bar{x}_k =1.6 y $\sigma^2_{Ln K}$ =1.0 (caso 2.3), $\sigma^2_{Ln K}$ =0.5 (caso 2.4), $\sigma^2_{Ln K}$ =1.5 (caso 2.5). A continuación se presentan los mapas de la estimación inicial, la estimación real (realización de Ln K, h o c) así como la estimación final realizada con el ESH para Ln K, h y c. En el Anexo B se presenta en diversos cuadros el cálculo del error medio y de la raíz del error cuadrático medio de Ln K, h y c para cada caso de estudio.

Figura 7. 14 Estimación de h y c con datos de h y c (Caso 2.3 con $\sigma^2_{LnK} = 1.0$ y $\overline{x}_k = 1.6$)

Figura 7. 15 Estimación de h y c con datos de h y c (Caso 2.4 con $\sigma^2_{LnK} = 0.5$ y $\overline{x}_k = 1.6$)

Figura 7. 16 Estimación de h y c con datos de h y c (Caso 2.5 con $\sigma^2_{LnK} = 1.5$ y $\overline{x}_k = 1.6$)

7.4.4 Resultados (Caso 2.3, 2.4 y 2.5)

El análisis de resultados se llevo a cabo con los mapas de la estimación inicial, real y generada con el ESH para el Ln K, h y c, así como con el cálculo del EM y del ECM de la estimación. Los resultados del cálculo del EM y del ECM para el Ln K, h y c se presentan en el anexo B.

Usando el ESH para la estimación de parámetros con Varianzas de Ln K diferentes (Caso 2.3 $\sigma_{Ln K}^2 = 1.0$, Caso 2.4 $\sigma_{Ln K}^2 = 0.5$, y Caso 2.5 $\sigma_{Ln K}^2 = 1.5$) se observa en todos los casos que el aporte de forma conjunta de datos de h y c en cada uno de los 6 tiempos, contribuyen a que el ECM inicial de Ln K disminuya. Además se observa que la disminución de el ECM inicial de Ln K es mayor en el caso 2.4 con $\sigma_{Ln K}^2 = 0.5$, seguida del caso 2.3 con $\sigma_{Ln K}^2 = 1.0$ y finalmente el caso 2.5 con $\sigma_{Ln K}^2 = 1.5$.

Del análisis a simple vista de los mapas de la estimación del Ln K (figura 7.13) en los casos 2.3, 2.4 y 2.5, resulta difícil decir que la estimación de Ln K realizada con el ESH tiene una estimación muy parecida a la real, sin embargo en todos los casos el ECM inicial de Ln K disminuye, lo que nos indica que la estimación de Ln K mejora con la aportación de datos. Usando el ESH para la estimación del estado con Varianzas de Ln K diferentes (Caso 1.3 $\sigma_{Ln K}^2 = 1.0$, Caso 1.4 $\sigma_{Ln K}^2 = 0.5$, y Caso 1.5 $\sigma_{Ln K}^2 = 0.5$) se observa en todos los casos que el aporte de forma conjunta de datos de h y c en cada uno de los 6 tiempos, contribuyen a que el ECM inicial de h y c disminuya en todos los casos con la misma magnitud.

Del análisis de los mapas de la estimación inicial y real de h y c (figura 7.14, 7.15 y 7.16), así como la estimación de h y c obtenida del ESH en los 6 tiempos, se observa en los casos 2.3, 2.4 y 2.5 que la estimación realizada con el ESH y el aporte de los datos de h y c, mejora la estimación inicial de h y c hasta llegar a ser muy parecida a la estimación real de h y c.

7.5 Resultados comparación de los casos 1.1, 1.2, 1.3, 1.4 y 1.5 (SGSim) y 2.1, 2.2, 2.3, 2.4 y 2.5 (LHS)

Usando el ESH para la estimación de parámetros se observa en los casos 1.1, 1.2, 1.3, 1.4 y 1.5, en donde la covarianza cruzada inicial de Ln K-h-c, se calculó empleando realizaciones obtenidas a través del método SGSim, que la disminución de el ECM inicial de Ln K fue mayor que en los casos 2.1, 2.2, 2.3, 2.4 y 2.5 en donde la matriz de covarianza cruzada inicial Ln K-h-c se calculó empleando realizaciones de método LHS.

Usando el ensamble suavizado para la estimación del estado se observa en los casos 1.1, 1.2, 1.3, 1.4 y 1.5, que la disminución de el ECM inicial de h, fue mayor que en los casos 2.1, 2.2, 2.3, 2.4 y 2.5 en donde la matriz de covarianza inicial se calculó empleando realizaciones de método LHS. Sin embargo en el caso de la estimación de c, la reducción del ECM inicial de c fue mayor en los casos en donde la matriz de covarianza inicial se calculó con realizaciones del método LHS que con la matriz de covarianza calculada con las realizaciones del método SGSim.

7.6 Estimación de parámetros y estado, comparando SGSIM y LHS (Caso 5)

En estos casos de estudio la estimación de parámetros generada con el ESH, se realizó empleando matrices de covarianza calculadas con realizaciones de Ln K obtenidas con dos métodos diferentes SGSIM (caso 5.2 o 1.2) y LHS (caso 5.1 o 2.2) con \bar{x}_k =1.6 y $\sigma^2_{Ln K}$ =1.0. En el cuadro 7.4 se presentan las 4 alternativas a estudiar en este punto.

Caso	Descripción	Varianza	Media	Matriz de covarianza
5.1 (2.2 _{verdadero})	Estimación con datos de c (Real LHS)	$\sigma^2_{LnK} = 1.0$		Cov LHS
5.2 (1.2 _{verdadero})	Estimación con datos de c (Real SG)	$\sigma^2_{LnK} = 1.0$	$\bar{x}_{k} = 1.6$	Cov SG
5.3	Estimación con datos de c (Real LHS)	$\sigma^2_{LnK} = 1.0$		Cov SG
5.4	Estimación con datos de c (Real SG)	$\sigma^2_{LnK} = 1.0$		Cov LHS

Cuadro 7. 4 Comparación SGSIM VS LHS

Se realizó la estimación de Ln K, h y c con el ESH, empleando únicamente 25 datos de c para cada tiempo y considerando dos alternativas:

- El caso 5.3 tomó como matriz de covarianza a priori a la calculada con las realizaciones de Ln K, h y c generadas con el modelo estocástico de flujo y transporte a partir de las realizaciones de Ln K obtenidas con SGSIM. Los 25 datos de c empleados para realizar la estimación de parámetros en este caso de estudio, se calcularon mediante el modelo de flujo y transporte a partir de la realización 800 de Ln K obtenida con el método LHS.
- El caso 5.4 tomó como matriz de covarianza a priori a la calculada con las realizaciones de Ln K, h y c generadas con el modelo estocástico de flujo y transporte a partir de las realizaciones de Ln K obtenidas con LHS. Los 25 datos de c empleados para realizar la estimación de parámetros en este caso de estudio, se calcularon mediante el modelo de flujo y transporte a partir de la realización 4000 de Ln K obtenida con el método SGSIM.

7.6.1 Estimación de parámetros y estado, Caso 5.1, 5.2, 5.3 y 5.4

A continuación se presentan los mapas de la estimación inicial (o a priori), la estimación real (realización de Ln K, h o c) así como la estimación final realizada con el ESH para Ln K, h y c. En el anexo B se presenta en diversos cuadros el cálculo del error medio y de la raíz del error cuadrático medio de Ln K, h y c para cada caso de estudio.

Figura 7. 17 Estimación de Ln K con datos de c (Caso 5.1, 5.2, 5.3 y 5.4 con $\sigma^2_{Ln K}$ =1.0 y \overline{x}_k =1.6)

Figura 7. 18 Estimación de h y c con datos de c (Caso 5.1 con σ^2_{LnK} =1.0 y \overline{x}_k =1.6)

Figura 7. 19 Estimación de h y c con datos de c (Caso 5.2 con $\sigma^2_{LnK} = 1.0$ y $\overline{x}_k = 1.6$)

Figura 7. 20 Estimación de h y c con datos de c (Caso 5.3 con $\sigma^2_{LnK} = 1.0$ y $\overline{x}_k = 1.6$)

Figura 7. 21 Estimación de h y c con datos de c (Caso 5.4 con $\sigma^2_{LnK} = 1.0$ y $\overline{x}_k = 1.6$)

7.6.2 Resultados (Caso 5.1, 5.2, 5.3 y 5.4)

El análisis de resultados se llevo a cabo con los mapas de la estimación inicial, real y generada con el ESH para el Ln K, h y c, así como con el cálculo del EM y del ECM de la estimación. Los resultados del cálculo del EM y del ECM para el Ln K, h y c se presentan en el anexo B.

El análisis de resultados se realiza comparando los casos 5.1 con 5.3 y por otra parte, los casos 5.2 con 5.4. Esto debido a que los primeros dos casos corresponden a una misma realización (realización de c calculada a partir de la realización de 800 del Ln K generada con el método LHS), mientras que los otros dos casos restantes corresponden a otra realización (realización de c calculada a partir de la realización número 4000 del Ln K generada con el método SGSim). De esta forma se compara el desempeño de las matrices de covarianza obtenidas mediante SGSIM y LHS.

Del análisis a simple vista de los mapas de la estimación del Ln K en los casos 5.1, y 5.3 (figura 7.17), resulta difícil decir que la estimación de Ln K realizada con el ESH tiene una estimación muy parecida a la real, sin embargo en los dos casos el ECM inicial de Ln K disminuye, lo que nos indica que la estimación de Ln K mejora con la aportación de datos de c. Usando el ESH para la estimación del estado se observa en los casos 5.1 y 5.3 (figuras 7.18 y 7.20, respectivamente), que el ECM inicial de h y c disminuye. Siendo en ambos casos que el ECM inicial de c, el que disminuye más debido a la aportación de datos de c en la estimación de c. El caso 5.1 con realizaciones y covarianza calculada con el método LHS, es el que tiene una mayor disminución del ECM inicial de c.

Del análisis de los mapas de la estimación inicial y real de h y c, así como la estimación de h y c obtenida del ESH en los 6 tiempos (figura 7.18 y 7.20, respectivamente), se observó que en los casos 5.1 y 5.3 que la estimación realizada con el ESH y el aporte de los datos de c, mejora la estimación inicial de h y c. Sin embargo la estimación de c es la que llega a ser muy parecida a la estimación real de c, por el aporte de datos de c en la estimación.

Del análisis a simple vista de los mapas de la estimación del Ln K en los casos 5.2, y 5.4 (figura 7.17), resulta difícil decir que la estimación de Ln K realizada con el ESH tiene una estimación muy parecida a la real, sin embargo en los dos casos el ECM inicial de Ln K disminuye, lo que nos indica que la estimación de Ln K mejora con la aportación de datos de c. El caso 5.4 el que tiene la mayor disminución del ECM inicial de Ln K.

Usando el ESH para la estimación del estado se observa en los casos 5.2 y 5.4, que el ECM inicial de h y c disminuye. Siendo en ambos casos que la estimación de c es la que disminuye más con respecto al ECM inicial de c debido a la aportación de datos c en la estimación de c. Del análisis de los mapas de la estimación inicial y real de h y c (figura 7.19 y 7.21, respectivamente), así como la estimación de h y c obtenida del ESH en los 6 tiempos, se observa en los casos 5.2 y 5.4 que la estimación realizada con el ESH y el aporte de los datos de c, mejora la estimación inicial de h y c. Sin embargo la estimación de c es la que llega a ser muy parecida a la estimación real de c.

Realizando una comparación de los métodos para generar realizaciones del Ln K (LHS y SGSIM) empleados en el método propuesto en esta tesis para la estimación conjunta del parámetro del Ln K y del estado, se realizó la comparación de los casos 5.1 (realizaciones de Ln K con el método LHS) y 5.2 (realizaciones de Ln K con el método SGSim).

Del análisis a simple vista de los mapas de la estimación del Ln K en los casos 5.1, y 5.2, resulta difícil decir que la estimación de Ln K realizada con el filtro tiene una estimación muy parecida a la real. Sin embargo, en ambos casos el ECM inicial del Ln K disminuyo, lo que indica que la estimación mejora, siendo el caso 5.2 es el que tiene la mayor disminución del ECM inicial del Ln K que el caso 5.1.

Del análisis de los mapas de la estimación inicial y real de h y c en los casos 5.1 y 5.2 (figura 7.18 y 7.19, respectivamente), obtenida del ESH en los 6 tiempos, se observa en ambos casos que la estimación realizada con el ESH y el aporte de los datos de c, mejora la estimación inicial de h y c. Sin embargo la estimación de c es la que llega a ser muy parecida a la estimación real de c. El caso 5.1 con realizaciones y covarianza calculada con el método LHS, es el que tiene una mayor disminución del ECM inicial de c. El caso 5.2 con

realizaciones y covarianza calculada con el método SGSim es el que tiene una mayor disminución del ECM inicial de h.

Capítulo 8. Análisis de sensibilidad del ensamble suavizado.

8.1 Objetivo

Generalmente los parámetros del semivariograma de Ln K no se conocen perfectamente: es por ello que el principal objetivo de los dos casos de estudio que se presentan en este capítulo, es analizar la sensibilidad de las estimaciones empleando el ESH cuando dos de los parámetros del semivariograma, la media y la varianza del Ln K, tienen errores. En los casos 3 y 4 se realiza un análisis de sensibilidad generando realizaciones del Ln K con el método LHS variando el valor de la media de K (\bar{x}_k) y la varianza del Ln K ($\sigma^2_{Ln K}$) (Briseño & Herrera, 2011).

8.2 Descripción de los casos de estudio

Para analizar la sensibilidad de las estimaciones empleando el ESH cuando dos de los parámetros del semivariograma, la media y la varianza del Ln K, tienen errores, se establecieron dos casos de estudio para estimar el Ln K, h y c usando diversos conjuntos de datos. Para el caso 3 se emplearon diversos valores de la media de K (0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2, 3.6 y 4.0 m/día) manteniendo la varianza del Ln K constante, igual a 1.0. Para el caso 4, se utilizaron diversos valores de la varianza del Ln K (0.50, 1.0, 1.25, 1.50, 1.75, 2.0, 2.50 y 3.0) manteniendo la media de K constante, igual a 1.6 m/día.
8.3 Transformación de datos normales estándar de una variable en lognormales.

Para transformar una realización normal estándar del Ln K con $\bar{x}_{LnK} = 0$ y $\sigma^2_{Ln K} = 1.0$, a una realización de conductividad hidráulica con diferentes valores tanto de la de media de K como de la varianza de Ln K, se considera la siguiente teoría (Manchuk, Leuangthong, & Deutsch, 2004). Existen ecuaciones que describen una distribución lognormal y su relación con una distribución normal. Una variable aleatoria Z|z(u) > 0, es lognormal con una media m y una desviación estandar σ si el logaritmo natural de Z(u), X(u) = Ln(Z(u)) es normalmente distribuido con media α y desviación estandar β . Conociendo la relación entre $Z(u) \rightarrow \log N(m, \sigma)$ y $X(u) \rightarrow N(\alpha, \beta)$, puede transformarse una distribución Gausiana, $Y(u) \sim N(0,1)$ a una distribución que tiene un comportamiento lognormal. Las ecuaciones 47 y 49 muestran la relación entre $X(u), Y(u) \neq Z(u)$, en donde Y(u) tiene una distribución normal estándar. Las ecuaciones 50 y 51 muestran la relación entre m y σ de la distribución lognormal.

$$X(u) = \alpha + \beta \cdot Y(u)$$
 Ec. 47

$$Z(u) = e^{X(u)}$$
 Ec. 48

Sustituyendo la ecuación 47 en la ecuación 48, queda la ecuación 49:

$$Z(u) = e^{\alpha + \beta \cdot Y(u)}$$
 Ec. 49

$$\alpha = \operatorname{Ln}(m) - \frac{\beta^2}{2}$$
 Ec. 50

$$\beta^2 = ln\left(1 + \frac{\sigma^2}{m^2}\right)$$
 Ec. 51

8.3.1 Transformación de datos normales estándar de una variable en Ln K.

La ecuación 47 transforma las simulaciones de SGSIM o LHS con media cero y distribución igual a 1, $Y(u) \sim N(0,1)$ a simulaciones lognormales con $X(u) \rightarrow N(\alpha,\beta)$. En donde Y(u) son los datos de las realizaciones del SGSIM.

8.3.2 Transformar las simulaciones de Ln K en K.

Finalmente con la ecuación 52, realizamos la transformación de las simulaciones de $X(u) \rightarrow N(\alpha, \beta)$, en donde X(u) = Ln(Z(u)), en realizaciones de K.

$$Z(u) = e^{X(u)}$$
 Ec. 52

8.3.3 Transformación de las realizaciones en el caso de estudio

El procedimiento se describe con simulaciones de Ln K normalizadas empleando una realización obtenida con el método LHS, sin embargo también se puede aplicar para simulaciones obtenidas con el método SGSIM. Con el método conocido como LHS, se obtuvo una realización no condicionada a datos de una variable natural la cual suponemos como lognormalmente distribuida que es la K. La malla para generar las simulaciones esta compuesta por 702 nodos, los cuales son los mismos que la malla del modelo determinista (Figura 7.1). El siguiente histograma (figura 8.1) corresponde a 702 puntos de la malla de una realización normal estándar del Ln K.

Figura 8. 1 Histograma de una realización normal estándar del Ln

• Simulaciones no condicionadas de Ln K.

Debido a que suponemos que la K tiene un comportamiento lognormal se realizó la transformación de las realizaciones normal estándar con $Y(u) \sim N(0,1)$, a realizaciones de Ln K con $X(u) \rightarrow N(\alpha, \beta)$. Para ello se generó un programa en fortran nombrado como NRM_LN K.EXE. El programa emplea la ecuación 52 para realizar la transformación. Los datos que el programa requiere son el valor de α determinado por medio de la ecuación 50, con *m* como el valor de la media de K y β como el valor de la desviación estándar del Ln K. Por ejemplo para transformar una realización normal estándar del Ln K, a una realización con media de K igual a 1.60 metros/día y valor de la varianza del Ln K igual a 3 (β =1.73 metros), se requiere calcular con la ecuación 50 el valor de α =-1.029. El siguiente histograma muestra una realización del Ln K (figura 8.2) con varianza del Ln K=3.0.

Simulaciones no condicionadas lognormales de K.

Para realizar la transformación de la realización del Ln K en realizaciones de K, se generó un programa en Fortran que emplea la ecuación 52, nombrado como SGSIM_Ln K_a_K.EXE. El siguiente histograma muestra una realización lognormal de K (figura 8.3).

Figura 8. 2 Histograma de una realización del Ln K.

Figura 8. 3 Histograma de una realización de K.

8.4 Descripción del Caso 3 ($\sigma^{2}_{Ln K}$ =1.0 y diferentes valores de \bar{x}_{k})

En este caso de estudio se emplearon diversos valores de la media de K (0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2, 3.6 y 4.0 m/día) y la varianza del Ln K fue constante, igual a 1.0. Los diversos casos de estudio se muestran en el cuadro siguiente (cuadro 8.1):

Caso	Descripción	Varianza σ ² Ln K	Media \overline{x}_{Lnk}	Varianza σ ² κ	$\frac{\text{Media}}{\overline{x}_K}$	Matriz de covarianza
3.A	Estimación con datos de h y c	1.0	-1.46	0.26	0.4	
3.B	Estimación con datos de h y c	1.0	-0.77	1.00	0.8	Covarianza
3.C	Estimación con datos de h y c	1.0	-0.33	2.42	1.2	inicial o
3 _{Verdadero}	Estimación con datos de h y c	1.0	0.00	4.00	1.6	a priori
3.F	Estimación con datos de h y c	1.0	0.17	6.65	2.0	- 40
3.G	Estimación con datos de h y c	1.0	0.36	9.63	2.4	$x_k = 1.6$
3.h	Estimación con datos de h y c	1.0	0.51	13.13	2.8	$\sigma^{2}_{LnK} = 1.0$
3.1	Estimación con datos de h y c	1.0	0.65	17.16	3.2	
3.J	Estimación con datos de h y c	1.0	0.76	21.65	3.6	
3.K	Estimación con datos de h y c	1.0	0.87	26.70	4.0	

Cuadro 8. 1 Casos de estudio con valores diferentes de la media de K

En este caso de estudio la estimación de Ln K, h y c generada con el ESH, se realizó empleando como covarianza inicial o a priori a la matriz de covarianza calculada con las realizaciones de Ln K, h y c generadas con el modelo estocástico de flujo y transporte a partir de las realizaciones de Ln K con \bar{x}_k = 1.6 m/día y $\sigma^2_{Ln K}$ =1.0 (caso base) obtenidas con el método LHS.

Para realizar la estimación de Ln K, h y c, se tomaron como datos reales a los valores de las realizaciones de h y c calculadas con el modelo de flujo y transporte a partir de una realización de Ln K con valores de media de K diferentes (\bar{x}_k =0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2, 3.6 y 4.0 m/día) y $\sigma^2_{Ln K}$ =1.0. La estimación de Ln K, h y c se generó empleando 25 datos de h y 25 datos de c dispersos en el área de estudio en cada tiempo de estimación (6 tiempos). En total se emplearon 150 datos de h y 150 datos de c.

8.4.1 Estimación de parámetros (Caso 3)

A continuación se presentan los mapas de la estimación inicial (o a priori), la estimación real (realización de Ln K, h y c) así como la estimación final calculada con el ESH para Ln K, h y c.

Figura 8. 4 Estimación de Ln K con datos de h y c (Caso 3A, B, C, F, G, H, I, J, y K con $\sigma^2_{Ln K} = 1.0$ y diferentes \overline{x}_k)

3A. Estimación real de h (Med: K=0.4)	3A Estimación de h (Med K=0.4)	3B. Estimación real de h (Med K=0.8)	3B Estimación de h (Med K=0.5)	3C. Estimación real de h (LHS-Med K=1.2)	3C. Estimación de h (Med K=1.2)	
						Simbologia Datos Datos del Ln K Datos del Cn K O Datos de C Puntos de C
						Escala de colores h
						984 982 980 978 978 978 974 972
						970 968 966 964 962 960 968
						966 954 952 950 948 946

Figura 8. 5 Estimación de h con datos de h y c (Caso 3A, 3B y 3C con $\sigma^2_{LnK} = 1.0$ y diferentes \overline{x}_k)

	3F. Estimación real de h (Med K=2.0)	3F. Estimación de h (Med K=2.0)	3G. Estimación real de h (Med K=2.4)	3G. Estimación de h (Med K=2.4)	3H, Estimación real de h (Med K=2.8)	3H. Estimación de h (Med K=2.8)	
9 17 17 (1997) 19 19 19 19 19 19 19 19 19 19 19 19 19 1							Ġ,
a n Tempo2 e a a a							Simbología Datos de h Datos del Ln K Datos del Ln K Datos de c + Puntos de + Puntos de
n Tempo 3 m e							Escala de colores h
Tiempo 4 a a a a							984 962 980 978 976 974 972
n Tieripo 5 m a a							970 968 966 964 962 960 958
a Tiempo 6 % 4 a a a a							956 954 952 950 948 946

Figura 8. 6 Estimación de h con datos de h y c (Caso 3F, 3G y 3H con $\sigma_{LnK}^2 = 1.0$ y diferentes \overline{x}_k)

38, Estimación real de h (Med: K=3.2)	31. Estimación de h (Med K=3.2)	3J. Estimación real de h (Med K=3.6)	3J. Estimación de h (Med K=3.6)	3K. Estimación real de h (Med K~4.0)	3K. Estimación de h (Med K=4.0)	
					0	G
m fight gat at the	1	641213	140.000	14 - 14 - 14 - 14 - 14 - 14 - 14 - 14 -	2 4 C 5 C	Simbologia
700	. 105	The way	S. S. S. S.	e	i fins :	· Datos
	1.5			and the second	1. 1. 1.	Datos
					1.0	O Datos de c
- Constant	1.10	Car and the	Car and a	1.1.1.1.1.1.1	11000	+ Puntos de estimación
	-	and the second	and and	1 5 18 1	1 15 18 1	
	· · · · · · · · · · · · · · · · · · ·				Charles States	Escala
		1	and the second	1. A. A.	1.00	de colores
				and the second second		h
		K	10	F	K get	984
-						982
1. N. A.	1.1.1	1.1.1		· #1 . A. 4. 11	- 44 July - 4	978
-			1 - 1 - O-			974
a the state	1 14 A 14	Car and the	Stranger 1	1.1.1		972
	1.12 53 1			A March	A BOARD	968
			44. 1			966 964
-	1. A. S.			and the second		962
	1.525.32		100000000			960 958
-	1	1. 4		Carl No h	110000	956
10		10 mg	1 M 40	and we have	in the set of	954
··· 8. Ap .			1.5		1 1	950
***			· · · · · · · · · · · · · · · · · · ·			946
AN		40. 10. 40. 40. 100. 100. 100		Law average		

Figura 8. 7 Estimación de h con datos de h y c (Caso 3I, 3J y 3K con $\sigma^2_{LnK} = 1.0$ y diferentes \overline{x}_k)

Figura 8. 8 Estimación de c con datos de h y c (Caso 3A, 3B y 3C con $\sigma_{LnK}^2 = 1.0$ y diferentes \overline{x}_k)

Figura 8. 9 Estimación de c con datos de h y c (σ^2_{LnK} =1.0 y diferentes \overline{x}_k) (Caso 3F, 3G y 3H)

Figura 8. 10 Estimación de c con datos de h y c (Caso 3I, 3J y 3K con $\sigma_{LnK}^2 = 1.0$ y diferentes \overline{x}_k)

8.4.2 Resultados (Caso 3)

Empleando como información a priori a la media y a la matriz de covarianza con y $\sigma_{LnK}^2 = 1.0$ y $\bar{x}_K = 1.6$ (Caso Real), y utilizando 150 datos de h y 150 datos de c con diferentes medias de K, en los diferentes casos de estudio. Se observa que usando el ESH para la estimación de Ln K, que los casos 3B, 3C, 3F, 3G, 3H, 3I, 3J y 3K cuyas medias de K respectivamente son $\bar{x}_K = 0.8$, 1.2, 2.0, 2.4, 2.8, 3.2, 3.6 y 4.0, el porcentaje de reducción de ECM en disminuye en promedio 17.84% y el porcentaje de reducción del EM disminuye en 8 de los 9 casos. El caso 3F en donde la media de $\bar{x}_K = 2.0$ el %red del EM aumenta a -122.23. Adicionalmente se observa que el caso 3A en donde la media de K es la más pequeña $\bar{x}_K =$ 0.4, el %red de el ECM aumenta a -4.68% y el %red del EM es de 9.88%.

Del análisis a simple vista de los mapas de la estimación del Ln K en los casos 3B, 3C, 3F, 3G, 3H, 3I, 3J y 3K (figura 8.4), resulta difícil decir que la estimación de Ln K realizada con el ESH tiene una estimación muy parecida a la real, sin embargo el %red de el ECM indica que disminuye el error con respecto el ECM inicial disminuye (salvo el caso 3A en donde el ECM aumenta), lo que nos indica que la estimación de Ln K mejora con la aportación de datos de h y c.

Empleando como información a priori a la media y a la matriz de covarianza con y $\sigma_{LnK}^2 = 1.0$ y $\bar{x}_K = 1.6$ (Caso Real), y utilizando 150 datos de h y 150 datos de c con diferentes medias de K, en los diferentes casos de estudio. Se observa que usando el ESH para la estimación del estado (h y c), en todos los casos, 3A, 3B, 3C, 3F, 3G, 3H, 3I, 3J y 3K (figuras 8.5, 8.6, 8.7, 8.8 y 8.9) cuyas medias de K respectivamente son \bar{x}_K =0.4, 0.8, 1.2, 2.0, 2.4, 2.8, 3.2, 3.6 y 4.0, que tanto para la estimación de h como c, el %red de el ECM y él %red del EM disminuye en promedio 85.55% y 82.22% (para h y c) y 95.61% y 88.12% (para h y c) respectivamente.

Del análisis de los mapas de la estimación inicial y real de h y c, así como la estimación de h y c obtenida del ESH en los 6 tiempos, se observa en todos los casos que la estimación realizada con el ESH y el aporte de los datos de h y c, mejora la estimación inicial de h y c, hasta ser muy parecida a los mapas reales de h y c.

8.5 Descripción del caso 4 (\bar{x}_k =1.6 y diferentes valores de σ^{2} Ln K)

En este caso de estudio se emplearon diversos valores de la varianza del Ln K (0.25, 0.50, 0.75, 1.0, 1.25, 1.50, 1.75, 2.0, 2.50 y 3.0) y la media de K fue constante, igual a 1.6. Los diversos casos de estudio se muestran en el cuadro siguiente (cuadro 8.2):

Caso	Descripción	Varianza σ ² Ln K	Media \bar{x}_{Lnk}	Varianza σ² _κ	Media \overline{x}_K	Matriz de covarianza
4.A	Estimación con datos de h y c	0.25	0.34	0.76	1.6	
4.B	Estimación con datos de h y c	0.50	0.22	1.74	1.6	
4.C	Estimación con datos de h y c	0.75	0.008	2.91	1.6	Covarianza
4 _{Verdadero}	Estimación con datos de h y c	1.00	0.00	4.03	1.6	inicial o
4.F	Estimación con datos de h y c	1.25	-0.17	5.92	1.6	a priori
4.G	Estimación con datos de h y c	1.50	-0.30	7.62	1.6	$\bar{x}_{k} = 1.6$
4.h	Estimación con datos de h y c	1.75	-0.43	9.56	1.6	y y
4.I	Estimación con datos de h y c	2.00	-0.56	11.66	1.6	$\sigma_{LnK}^{-} = 1.0$
4.J	Estimación con datos de h y c	2.50	-0.81	16.26	1.6	
4.K	Estimación con datos de h y c	3.00	-1.06	21.50	1.6	

Cuadro 8. 2 Casos de estudio diferentes medias de K

En este caso de estudio la estimación de Ln K, h y c generada con el ESH, se realizó empleando como covarianza inicial o a priori a la matriz de covarianza calculada con las realizaciones de Ln K, h y c generadas con el modelo estocástico de flujo y transporte a partir de las realizaciones de Ln K con $\bar{x}_k \bar{x}_k$ = 1.6 m/día y $\sigma^2_{Ln K}$ =1.0 (caso verdadero) obtenidas con el método LHS.

Para realizar la estimación de Ln K, h y c, como datos reales se tomó a las realizaciones de h y c calculadas con el modelo estocástico de flujo y transporte a partir de las realizaciones de Ln K con diversos valores de la varianza del Ln K (0.25, 0.50, 0.75, 1.0, 1.25, 1.50, 1.75, 2.0, 2.50 y 3.0) y \bar{x}_k =1.6. La estimación de Ln K, h y c se generó empleando 25 datos de h y 25 datos de c dispersos en el área de estudio en cada tiempo de estimación (6 tiempos). En total se emplearon 150 datos de h y 150 datos de c.

8.5.1 Estimación de parámetros (Caso 4)

A continuación se presentan los mapas de la estimación inicial (o a priori), la estimación real (realización de Ln K, h y c) así como la estimación final calculada con el ESH para Ln K, h y c.

Figura 8. 11 Estimación de Ln K con datos de h y c (\bar{x}_k =1.60 y diferentes σ^2_{LnK})

	 Estimación real de h (Var In K=0.25) 	4A. Estimación de h	 Estimación real de h (Vár In K=0.50) 	48. Estimación de h	4C. Estimación real de h (Var In K=0.75)	4C. Estimación de h	
Terps 1							슈
Tempo 2							Simbologia Datos de h Datos det Ln K O Datos de c + Puntos de
Tempo 3							Escala de colores h
Tempo 4							996 985 984 983 982 961 980 979 978 977
Tiempo 5							976 975 974 973 972 971 970 969 968 967
Tiempo 6							965 964

Figura 8. 12 Estimación de h con datos de h y c (Caso 4A, 4B y 4C con \bar{x}_k =1.60 y diferentes σ^2_{LnK})

Figura 8. 13 Estimación de h con datos de h y c (Caso 4F, 4G y 4H con \overline{x}_k =1.60 y diferentes σ^2_{LnK})

Figura 8. 14 Estimación de h con datos de h y c (Caso 4I, 4J y 4K con \bar{x}_k =1.60 y diferentes $\sigma^2_{Ln K}$)

Figura 8. 15 Estimación de c con datos de h y c (Caso 4A, 4B y 4C con \overline{x}_k =1.60 y diferentes σ^2_{LnK})

Figura 8. 16 Estimación de c con datos de h y c (Caso 4F, 4G y 4H con \overline{x}_k =1.60 y diferentes σ^2_{LnK})

Figura 8. 17 Estimación de c con datos de h y c (Caso 4I, 4J y 4K con \overline{x}_k =1.60 y diferentes $\sigma^2_{Ln K}$)

8.5.2 Resultados (Caso 4)

El caso 4 utiliza el ESH para la estimación de Ln K, h y c, empleando como información a priori a la media y a la matriz de covarianza Ln K-h-c con y $\sigma_{LnK}^2 = 1.0$ y $\bar{x}_K = 1.6$ (Caso Real) y utilizando 150 datos de h y 150 datos de c calculados mediante realizaciones de K con diferentes valores de la varianza del Ln K (caso 4.A, 4B, 4C, 4.Real, 4.F, 4.G, 4.h, 4.l, 4.J, y 4.K con $\sigma_{Ln K}^2$ =0.25, 0.50, 0.75, 1.0, 1.25, 1.50, 1.75, 2.0, 2.50 y 3.0) y la media de K fue constante, iguala a 1.6 m/día.

Del análisis de resultados de este caso de estudio, se determinó que la estimación de Ln K realizada con el ESH en todos los casos (4A, 4B, 4C, 4F, 4G, 4H, 4I, 4J y 4K) en donde las varianzas del Ln K respectivamente son $\bar{x}_K = \sigma_{LnK}^2 = 0.25$, 0.5, 0.75, 1.25, 1.5, 1.75, 2.0, 2.5 y 3.0, el ESH genera buenas estimaciones, debido a que el porcentaje de reducción de ECM en disminuye en promedio 17.13% (promedio de los 8 casos de estudio) y el %red del EM disminuye en 8 de los 9 casos, en promedio 47.08%. Únicamente en el caso 4C en donde la $\sigma_{LnK}^2 = 0.75$ el %red del EM aumenta a -111.97. Del análisis a simple vista de los mapas de la estimación de Ln K realizada con el ESH tiene una estimación muy parecida a la real, el ESH genera buenas estimaciones, debido que él %red de el ECM indica que disminuye el error con respecto a el ECM inicial, lo que nos indica que la estimación de Ln K mejora con la aportación de datos de h y c.

Con los resultados de la estimación de h y c generada con el ESH (caso 4), se observó que el ESH genera buenas estimaciones en todos los casos de estudio, ya que tanto para la estimación de h como c, el %red de el ECM y él %red del EM disminuye en promedio 66.09% y 84.85% (para h y c) y 77.21% y 77.88% (para h y c) respectivamente. Del análisis de los mapas de la estimación inicial y real de h y c, así como la estimación de h y c obtenida del ESH en los 6 tiempos, se determinó que en todos los casos que la estimación realizada con el ESH y el aporte de los datos de h y c, mejora la estimación inicial de h y c hasta ser muy parecida a los mapas reales.

Capítulo 9. Análisis de resultados

En esta tesis se adaptó y se probó el método propuesto originalmente por Herrera (1998) para el diseño óptimo de redes de monitoreo de calidad del agua subterránea, para la optimización de redes de monitoreo de los niveles del agua subterránea. La adaptación de la metodología se probó en el capítulo 3 en un caso de estudio sintético basado en una representación simplificada del acuífero del Valle de Querétaro (AVQ). En este caso, se rediseñó una red de monitoreo de los niveles del agua subterránea suponiendo que los cambios en los niveles son insignificantes. Para esto se utilizó un modelo numérico de flujo en estado estacionario. Con base en los resultados presentados en el capítulo 3 de esta tesis, se observó que el diseño de la red de monitoreo piezométrica para este caso de estudio mediante el método de Herrera y Pinder es satisfactorio y que se tienen buenas perspectivas para aplicar exitosamente esta metodología al diseño de redes de monitoreo de los niveles del agua subterránea en casos reales. Se recomienda en un trabajo futuro realizar una prueba similar, para el diseño espacio-temporal de una red de monitoreo piezométrica.

En esta tesis se desarrolló y probó un método de estimación conjunta del parámetro Ln K y del estado para un modelo estocástico de flujo de aguas subterráneas. El método desarrollado tomó como base una parte del método propuesto originalmente por Herrera (1998) para el diseño óptimo de redes de monitoreo de calidad del agua subterránea. La metodología propuesta en esta tesis consiste en aplicar el ensamble suavizado para estimar conjuntamente el campo de Ln K, junto con la carga hidráulica y/o la concentración de contaminantes. El método desarrollado se probó en diversos casos de estudio. Los resultados de cada uno de ellos se presentan a continuación.

El método de estimación conjunta de parámetros y estado se aplicó en una primera prueba descrita en el capítulo 5. El objetivo de este caso de estudio consistió en aplicar el ESH para la estimación de parámetros del logaritmo natural de la conductividad hidráulica y para la estimación del estado para la carga hidráulica en un modelo estocástico sintético de flujo de aguas subterráneas (estado estacionario), basado en una representación simplificada del acuífero del Valle de Querétaro.

Con base en los resultados presentados en el capítulo 5 de esta tesis, se observó que usando el ESH para la estimación del parámetro Ln K y del estado para la carga hidráulica, se observó que la estimación realizada con el ESH, está dentro del criterio del 68% para las bandas de confianza. Con el ESH para la estimación, se observa que cuando existe aporte de datos del Ln K o h, se obtiene una mejor estimación y por lo tanto existe una disminución de los errores, debido a la contribución de los datos.

Del análisis a simple vista de los mapas de la estimación de Ln K generada con el ESH de cada uno de los casos, resulta difícil decidir cuál es el que tiene un mejor comportamiento, sin embargo del análisis de los errores se observó que el Caso B con el aporte de 33 datos de Ln K presenta mejores resultados. El análisis de los mapas de estimación de h, realizada con el ESH en los nodos de la malla de estimación de cada uno de los diferentes casos, se observó que el caso A (aporte de datos de 33 datos de h), caso B (aporte de datos de 33 datos de Ln K) y el caso D (aporte de 33 datos de h y 33 datos de Ln K) tienen una buena estimación de h con un error medio de -0.049 metros y un ECM de 0.489. Finalmente es muy importante considerar que en las zonas en donde no se aportan datos (de Ln K o de h) para realizar la estimación, no se aprecian cambios considerables de la varianza final de la estimación en dichas zonas. Inversamente, en las zonas en donde sí se aportan datos, la varianza final se reduce. De todos los casos de estudio la mayor varianza se encuentra en la zona NW debido a la carencia de datos para reducirla.

Como se menciona en el párrafo anterior, el método de estimación propuesto en esta tesis se aplicó únicamente para estimar el Ln K y h. Es por ello que en el capítulo 6, el método de estimación conjunta de parámetro y estado se realizó en una segunda prueba y el objetivo consistió en aplicar el ESH para la estimación del parámetro Ln K y para la estimación del estado para la carga hidráulica y la concentración de contaminantes para un modelo estocástico de flujo y transporte de aguas subterráneas. El caso de estudio se basó en una representación simplificada del acuífero del valle de Querétaro descrito en el capítulo 3.

Los resultados presentados en el capítulo 6 de esta tesis, muestran que para correr el modelo estocástico de flujo y transporte completo del Valle de Querétaro (6676 nodos, 13,066 elementos, 1 capa y 13 tiempos de salida) con 4000 realizaciones de K y generar la matriz de covarianza a priori Ln K-h-c, se necesitaron 12 días, en una computadora con procesador Pentium 4 a 2.8 Ghz y 2 Gb de memoria Ram. De lo anterior se observó que al

aplicar la metodología de estimación de parámetros propuesta en esta tesis, es recomendable tener en cuenta a la hora de diseñar el modelo estocástico de flujo y transporte, tanto los requerimientos de cómputo como el tiempo que será necesario para correr el modelo estocástico y generar la matriz de covarianza a priori Ln K-h-c, empleada en el método. En el capítulo 10 de esta tesis se presentan una conclusión respecto a la eficiencia computacional del método propuesto para realizar la estimación de parámetros y estado.

Por lo anterior se recortó el área del modelo completo del acuífero del Valle de Querétaro con el objetivo de disminuir el tiempo computacional para correr las diferentes simulaciones estocásticas. El modelo estocástico de flujo y transporte reducido, cuenta con una malla triangular de 1970 nodos, 3858 elementos y 1 capa, con los mismos parámetros hidráulicos que el modelo completo de flujo y transporte, con excepción de las condiciones de frontera. Como condición de frontera se determinó como carga asignada a la media de las 4000 realizaciones de h calculadas en los puntos de estimación correspondientes a los obtenidos con el modelo estocástico de flujo completo. De la comparación de los resultados entre el modelo completo y el modelo reducido se observó que el modelo reducido tardó en una computadora con las características mencionadas anteriormente, 1 día en correr para completar las 4000 realizaciones de h y c. Asimismo, se observó que las realizaciones son muy similares y convergen de forma muy similar, por lo cual se comprobó que el procedimiento para asignar las condiciones de frontera en el modelo reducido fueron adecuadas o satisfactorias.

Con base en los resultados presentados en el capítulo 6 de esta tesis, se observó que la estimación de Ln K, h y c, en los tres casos de estudio (Caso A con 30 datos de h, Caso B con 455 datos de c y Caso C con 30 datos de Ln K) realizada con el ESH para ambos modelos (empleando a la matriz de covarianza a priori calculada tanto con el modelo completo como el modelo reducido) está dentro del criterio del 68% para las bandas de confianza. De igual forma que cuando se empleó el ESH para la estimación de Ln K y h (capítulo 5), se observa que cuando existe aporte de datos de Ln K, h y c, existe una mejor estimación de Ln K, h y c. Del análisis a simple vista de los mapas de la estimación del Ln K generada con el ESH de cada uno de los casos, resulta difícil decidir cuál de los casos de estudio es el que tiene un mejor comportamiento, sin embargo del análisis de los errores se observó que el caso C tiene la mejor estimación de Ln K, con el aporte de 30 datos de Ln K.

El análisis de los mapas de estimación de h y c, realizada con el ESH en los nodos de la malla de estimación de cada uno de los diferentes casos, se comprobó que para la estimación de h el caso A (aporte de datos de 30 datos de h) tienen una buena estimación de h, muy parecida al caso real y el caso C (aporte de datos de 455 datos de c) tienen una excelente estimación de c, también muy parecida al caso real. Finalmente es importante mencionar que en este capítulo únicamente se emplearon datos de Ln K o datos de h o datos de c para estimar parámetros y estado con el ESH. En el capítulo 7 se realiza la estimación de parámetros y estado empleando el ESH en diversos casos de estudio empleando datos de h y c de forma conjunta para realizar la estimación.

El método de estimación conjunta de parámetro y estado se aplicó en una tercera prueba descrita en el capítulo 7. El objetivo general de los casos presentados en este capítulo fue aplicar el método de estimación desarrollado en esta tesis para la estimación conjunta de Ln K, h y c en un caso de estudio sintético, considerando diversas alternativas para la generación de las realizaciones del Ln K con las cuales se calculó la matriz de covarianza inicial que requiere el ESH para su implementación.

En el caso 1.1, 1.2 y 1.3 (capítulo 7) se generaron 3000 realizaciones del Ln K con el método conocido como simulación secuencial gaussiana, con una media constante de K (\bar{x}_k =1.6) y una varianza constante de Ln K ($\sigma^2_{Ln K}$ =1.0). La estimación realizada con el ESH empleó en el caso 1.1 únicamente datos de h, en el caso 1.2 únicamente datos de c y en el caso 1.3 empleó de forma conjunta datos de h y c. Del análisis de los resultados de la estimación del Ln K de los casos 1.1, 1.2 y 1.3, se observó que cuando existe aporte de datos de h, de c y de h y c de forma conjunta, existe una mejor estimación. Sin embargo debido a que el caso 1.3 existe aporte de datos de h y c de forma conjunta, existe una mejor estimación. Sin embargo debido a que el caso 1.3 el que tiene una mayor disminución de el ECM inicial de Ln K; se observó que cuando existe aporte de datos de h y c de forma conjunta se logra la mejor estimación del Ln K, que cuando solo empleamos datos de h o c.

Debido a que el ECM inicial de Ln K disminuye en todos los casos (1.1, 1.2, y 1.3), se concluye que la estimación de Ln K mejora en todos los casos con la aportación de datos de h, c, y h y c. Debido a que el caso 1.3 es el que tiene una mayor disminución de el ECM inicial de h y c; se observó que cuando existe aporte de datos de h y c de forma conjunta se logra una mejor estimación, que cuando solo empleamos datos de h o c. Del análisis de los mapas de la estimación inicial y real de h y c, así como la estimación de h y c obtenida del

ESH en los 6 tiempos considerados, se determinó que cuando existe aporte de datos de h y datos de h y c de forma conjunta en cada uno de los 6 tiempos, mejora la estimación inicial de h hasta llegar a ser muy parecida a la estimación real de h. Lo mismo ocurre con la estimación del ESH empleando datos de c y datos de h y c de forma conjunta, la estimación de c mejora hasta ser muy parecida a la real.

En el caso 1.3, 1.4 y 1.5 (capítulo 7) se generaron 3000 realizaciones del Ln K con el método conocido como simulación secuencial gaussiana, con una media constante de K (\bar{x}_k =1.6) y diferentes valores de la varianza del Ln K (caso 1.3 $\sigma^2_{Ln K}$ =1.0, caso 1.4 $\sigma^2_{Ln K}$ =0.5 y el caso 1.5 $\sigma^2_{Ln K}$ =1.5). La estimación realizada con el ESH empleó en los tres casos de estudio datos de h y c de forma conjunta.

Del análisis de los resultados de la estimación del Ln K de los casos 1.3, 1.4 y 1.5, se concluye que aún y cuando el ESH emplee matrices de covarianza a priori (h-Ln K-c) calculadas con realizaciones de Ln K con varianzas diferentes de la unidad ($\sigma_{Ln K}^2$ =0.5 y $\sigma_{Ln K}^2$ =1.5), la estimación generada con el ESH y con datos de h y c de forma conjunta, contribuyen a que el ECM inicial de Ln K, h y c disminuya y genere buenas estimaciones. Del análisis de los mapas de la estimación inicial y real de h y c, así como la estimación de h y c obtenida del ESH en los 6 tiempos, se comprobó que la estimación realizada con el ESH y el aporte de los datos de h y c, mejora la estimación inicial de h y c hasta llegar a ser muy parecida a la estimación real de h y c.

En el Caso 2.1, 2.2 y 2.3 (capítulo 7) se generaron 1000 realizaciones del Ln K con el método conocido como Latin Sampling Hypercube, con una media constante de K (\bar{x}_k =1.6) y una varianza constante de Ln K ($\sigma^2_{Ln K}$ =1.0). La estimación realizada con el ESH, en el caso 2.1 empleó únicamente datos de h, en el caso 2.2 únicamente datos de c y en el caso 2.3 datos de h y c de forma conjunta.

Debido a que el caso 2.3 es el que tiene una mayor disminución del ECM inicial de Ln K; se observó que cuando existe aporte de datos de h y c de forma conjunta se logra la mejor estimación del Ln K, que cuando solo empleamos datos de h o c. También, debido a que el ECM inicial de Ln K disminuye en todos los casos (2.1, 2.2, y 2.3), se comprobó que la estimación de Ln K realizada con el ESH mejora en todos los casos con la aportación de datos de h, c y h y c.

Del análisis de los resultados de la estimación del estado (h y c) de los casos 2.1, 2.2 y 2.3, se observó que cuando existe aporte de datos de h, de c y de h y c de forma conjunta, el ECM disminuye con respecto al inicial por lo tanto existe una mejor estimación. Debido a que el caso 1.3 es el que tiene una mayor disminución del ECM inicial de h y c; se observó que cuando existe aporte de datos de h y c de forma conjunta se logra una mejor estimación, que cuando solo empleamos únicamente datos de h o c. Del análisis de los mapas de la estimación inicial y real de h y c, así como la estimación de h y c obtenida del ESH en los 6 tiempos, se concluye que cuando existe aporte de datos de h. Lo mismo ocurre con la estimación del ESH empleando datos de c y datos de h y c de forma conjunta, se determinó que cuando existe aporte de datos de h. Lo mismo ocurre con la estimación del ESH empleando datos de c y datos de h y c, la estimación de c mejora hasta ser muy parecida a la real.

En el Caso 2.3, 2.4 y 2.5 (capítulo 7) se generaron 1000 realizaciones del Ln K con el método LHS, con una media constante de K (\bar{x}_k =1.6) y diferentes valores de la varianza del Ln K (caso 2.3 $\sigma_{Ln K}^2$ =1.0, caso 2.4 $\sigma_{Ln K}^2$ =0.5 y el caso 2.5 $\sigma_{Ln K}^2$ =1.5). La estimación realizada con el ESH empleó en los tres casos de estudio datos de h y c de forma conjunta. Del análisis de los resultados de la estimación del Ln K de los casos 2.3, 2.4 y 2.5, se observó que aún y cuando el ESH emplee matrices de covarianza a priori (h-Ln K-c) calculadas con realizaciones de Ln K con varianzas diferentes de la unidad ($\sigma_{Ln K}^2$ =0.5 y $\sigma_{Ln K}^2$ =1.5), la estimación generada con el ESH y con datos de h y c de forma conjunta, contribuyen a que el ECM inicial de Ln K, h y c disminuya y genere buenas estimación de h y c obtenida del ESH en los 6 tiempos, se concluye que la estimación realizada con el ESH y el aporte de los datos de h y c, mejora la estimación inicial de h y c hasta llegar a ser muy parecida a la estimación real de h y c.

De la comparación de los resultados (capítulo 7) de los casos 1.1, 1.2, 1.3, 1.4 y 1.5 (realizaciones de Ln K con método SGSIM) versus casos 2.1, 2.2, 2.3, 2.4 y 2.5 (realizaciones de Ln K con método LHS), se observó que para la estimación de Ln K la disminución de el ECM inicial de Ln K fue mayor en los casos 2.1, 2.2, 2.3, 2.4 y 2.5 en donde la matriz de covarianza inicial se calculó empleando realizaciones de método LHS,

que en los casos 1.1, 1.2, 1.3, 1.4 y 1.5, en donde la covarianza inicial se calculó empleando realizaciones obtenidas a través del método SGSIM.

Se observó en los casos 1.1, 1.2, 1.3, 1.4 y 1.5, que la disminución del ECM inicial de h, fue mayor que en los casos 2.1, 2.2, 2.3, 2.4 y 2.5. Sin embargo en el caso de la estimación de c, la reducción del ECM inicial de c fue mayor en los casos en donde la matriz de covarianza inicial se calculó con realizaciones del método LHS que con la matriz de covarianza calculada con las realizaciones del método SGSIM.

En los casos 5.1, 5.2, 5.3 y 5.4 (capítulo 7) la estimación de parámetros generada con el ESH, se realizó empleando matrices de covarianza calculadas con realizaciones de Ln K obtenidas con dos métodos diferentes SGSIM y LHS con media de K constante (\bar{x}_k =1.6) y varianza del Ln K ($\sigma^2_{Ln K}$ =1.0).

La estimación realizada con el ESH empleó en los cuatro casos de estudio únicamente datos de c y las matrices de covarianza a priori se tomaron como se describe en los casos siguientes; caso 5.1 (también caso 2.2) matriz de covarianza obtenida con el método LHS y datos de c calculados con la realización del método LHS, caso 5.2 (también caso 1.2) matriz de covarianza obtenida con el método SGSIM y datos de c calculados con la realización del método SGSIM, caso 5.3 matriz de covarianza obtenida con el método LHS. Finalmente el caso 5.4 emplea la matriz de covarianza obtenida con el método LHS y datos de c calculados con la realización del método LHS.

Usando el ESH para la estimación de Ln K se observó que empleando el método LHS (Caso 5.2) para generar la matriz de covarianza a priori Ln K-h-c y datos de c, se logra una mayor disminución de el ECM inicial de Ln K, que con el método SGSIM (caso 5.1). Del análisis a simple vista de los mapas de la estimación del Ln K en los casos 5.1, y 5.2, se determinó que la estimación de Ln K mejora con la aportación de datos de c en ambos casos (5.1 y 5.2) Del análisis de los mapas de la estimación inicial y real de h y c, así como la estimación de h y c obtenida del ESH en los 6 tiempos (casos 5.1 y 5.2), se determinó que la estimación realizada con el ESH y el aporte de los datos de c, mejora la estimación inicial de h y c. Sin embargo la estimación de c es la que llega a ser muy parecida a la estimación real de c debido al aporte de datos de c.

Del análisis de los resultados de la disminución de el ECM inicial de Ln K, h y c en los casos 5.3 y 5.4, se observó que la estimación generada con el ESH de Ln K, h y c es buena, incluso en el caso en donde la matriz de covarianza se obtiene con el método SGSIM o LHS y las realizaciones de c se obtienen con el método LHS o SGSIM respectivamente. Sin embargo es importante mencionar que en ambos casos el ECM inicial de c es la que disminuye más debido a la aportación de datos de c en la estimación de c.

Usando el ESH para la estimación de parámetros se observa en los casos 5.3 (Realizaciones con el método LHS y covarianza inicial con el método SGSim) y 5.4 (Realizaciones con el método SGSim y covarianza inicial con el método LHS), que en ambos casos el ECM inicial de Ln K disminuye. Con base en lo anterior se determinó que aunque el ESH emplee una matriz de covarianza a priori diferente o incorrecta puede, llegar a mejorar la estimación de parámetros y estado con el aporte de datos correctos de c.

El método de estimación de parámetros se aplicó a una cuarta y última prueba descrita en el capítulo 8. Debido a que generalmente los parámetros del semivariograma de Ln K no se conocen perfectamente, el objetivo de esta prueba consistió en analizar la sensibilidad de las estimaciones del ESH cuando dos de los parámetros del semivariograma, la media y la varianza del Ln K, tienen errores. En los casos 3 y 4 se realiza un análisis de sensibilidad generando realizaciones del Ln K con el método LHS modificando la media y la varianza del Ln K respectivamente.

El caso 3 utiliza el ESH para la estimación de Ln K, h y c, empleando como información a priori a la media y a la matriz de covarianza Ln K-h-c con y $\sigma_{LnK}^2 = 1.0$ y $\bar{x}_K = 1.6$ (Caso Real) y utilizando 150 datos de h y 150 datos de c calculados mediante realizaciones de K con diferentes medias (Caso 3.A, 3.B, 3.C, 3.Real, 3.F, 3.G, 3.h, 3.I, 3.J y 3.K con $\bar{x}_k \bar{x}_k = 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2, 3.6 y 4.0 m/día respectivamente). Del análisis de resultados de este caso de estudio, se observó que la estimación de Ln K realizada con el ESH en los casos (3B, 3C, 3F, 3G, 3H, 3I, 3J y 3K) en donde la media de K tiene valores de <math>\bar{x}_K \bar{x}_K = 0.8, 1.2, 2.0, 2.4, 2.8, 3.2, 3.6 y 4.0,$ el ESH genera buenas estimaciones. Debido a que el porcentaje de reducción de ECM disminuye en promedio 17.84% (promedio de los 8 casos de estudio) y el porcentaje de reducción del EM disminuye en 8 de los 9 casos. Adicionalmente se observó que el ESH para la estimación de Ln K en el caso de la media de

K es la más pequeña $\bar{x}_K \bar{x}_K = 0.4$ (caso 3A), la estimación del ESH no es buena, ya que el %red de el ECM aumenta a -4.68% y el %red del EM es de 9.88%.

Del análisis a simple vista de los mapas de la estimación del Ln K en donde la media de K tiene valores de $\bar{x}_K \bar{x}_K = 0.8$, 1.2, 2.0, 2.4, 2.8, 3.2, 3.6 y 4.0, resulta difícil decir que la estimación de Ln K realizada con el ESH tiene una estimación muy parecida a la real, sin embargo el %red de el ECM indica que disminuye el error con respecto el ECM inicial disminuye (salvo el caso 3A en donde el ECM aumenta), lo que nos indica que la estimación de Ln K mejora con la aportación de datos de h y c.

Co los resultados de la estimación de h y c generada con el ESH (caso 3), se observó que el ESH genera buenas estimaciones en todos los casos de estudio, ya que tanto para la estimación de h como c, el %red de el ECM y él %red del EM disminuye en promedio 85.55% y 82.22% (para h y c) y 95.61% y 88.12% (para h y c) respectivamente. Del análisis de los mapas de la estimación inicial y real de h y c, así como la estimación de h y c obtenida del ESH en los 6 tiempos, se determinó que en todos los casos que la estimación realizada con el ESH y el aporte de los datos de h y c, mejora la estimación inicial de h y c hasta ser muy parecida a los mapas reales.

El caso 4 (capítulo 8) utiliza el ESH para la estimación de Ln K, h y c, empleando como información a priori a la media y a la matriz de covarianza Ln K-h-c con y $\sigma_{LnK}^2 = 1.0$ y $\bar{x}_{K} = 1.6$ (Caso Real) y utilizando 150 datos de h y 150 datos de c calculados mediante realizaciones de K con diferentes valores de la varianza del Ln K (caso 4.A, 4B, 4C, 4.Real, 4.F, 4.G, 4.h, 4.I, 4.J, y 4.K con σ_{LnK}^2 =0.25, 0.50, 0.75, 1.0, 1.25, 1.50, 1.75, 2.0, 2.50 y 3.0) y la media de K fue constante, iguala a 1.6 m/día.

Del análisis de resultados de este caso de estudio, se determinó que la estimación de Ln K realizada con el ESH en todos los casos (4A, 4B, 4C, 4F, 4G, 4H, 4I, 4J y 4K) en donde las varianzas del Ln K respectivamente son $\sigma_{LnK}^2 = 0.25, 0.5, 0.75, 1.25, 1.5, 1.75, 2.0, 2.5 y 3.0,$ el ESH genera buenas estimaciones, debido a que el porcentaje de reducción de ECM en disminuye en promedio 17.13% (promedio de los 8 casos de estudio) y el %red del EM disminuye en 8 de los 9 casos, en promedio 47.08%. Únicamente en el caso 4C en donde $\sigma_{LnK}^2 = 0.75$ el %red del EM aumenta a -111.47%. Del análisis a simple vista de los mapas de la estimación del Ln K en todos los casos, se determinó que aunque resulta difícil decir que

la estimación de Ln K realizada con el ESH tiene una estimación muy parecida a la real, el ESH genera buenas estimaciones, debido que él %red de el ECM indica que disminuye el error con respecto a el ECM inicial, lo que nos indica que la estimación de Ln K mejora con la aportación de datos de h y c.

Con los resultados de la estimación de h y c generada con el ESH (caso 4), se observó que el ESH genera buenas estimaciones en todos los casos de estudio, ya que tanto para la estimación de h como c, el %red de el ECM y él %red del EM disminuye en promedio 66.09% y 84.85% (para h y c) y 77.21% y 77.88% (para h y c) respectivamente. Del análisis de los mapas de la estimación inicial y real de h y c, así como la estimación de h y c obtenida del ESH en los 6 tiempos, se determinó que en todos los casos que la estimación realizada con el ESH y el aporte de los datos de h y c, mejora la estimación inicial de h y c hasta ser muy parecida a los mapas reales.

Del análisis de sensibilidad realizado en el capítulo 8 de esta tesis, se observó que el ESH no genera buenas estimaciones de Ln K en casos en donde la media de K es muy pequeña $(\bar{x}_K = 0.4)$, sin embargo, debido a que fue en esta tesis de investigación únicamente en un solo caso de estudio (caso 3A) fue en donde el ESH no generó buenas estimaciones de Ln K, se recomienda realizar un trabajo futuro para determinar de forma más específica cuando el ESH no genera buenas estimaciones de Ln K. En casos en donde la \bar{x}_K es mayo a 0.8, el ESH genera buenas estimaciones de Ln K.

Del análisis de sensibilidad se determinó que en ESH genera buenas estimaciones de h y c, aún en los casos en donde para la estimación de Ln K, h y c se emplea como información a priori a la media y a la matriz de covarianza Ln K-h-c con $\sigma_{LnK}^2 = 1.0$ y $\bar{x}_K = 1.6$ (Caso Real) y datos de h y c calculados mediante realizaciones de K con diferentes medias de K ($\bar{x}_k \bar{x}_k =$ 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2, 3.6 y 4.0) y varianzas del Ln K ($\sigma_{Ln K}^2$ =0.25, 0.50, 0.75, 1.0, 1.25, 1.50, 1.75, 2.0, 2.50 y 3.0).

Capítulo 10. Conclusiones

De acuerdo al análisis del estado del arte, se encontró que él método de asimilación de datos que desarrolló y aplicó Herrera en 1998 en el diseño óptimo de redes de monitoreo de la calidad de agua subterránea, al que llamó filtro de Kalman Estático en ese trabajo y varios posteriores, es muy parecido al llamado ensamble suavizado de van Leeuwen y Evensen (1996). Por ese motivo, en esta tesis nos referimos a él como ensamble suavizado de Herrera.

El ESH, se tomó de base para proponer el método de estimación conjunta del parámetro del Ln K y el estado (carga hidráulica y/o concentración de algún soluto) desarrollado e implementado en esta tesis doctoral. Después de Herrera (1998), el ESH se aplicó únicamente una segunda vez a problemas de aguas subterráneas, por Bailey y Baù (2010), en la estimación de la conductividad hidráulica usando datos de carga hidráulica y flujo de retornos. En este sentido, el trabajo desarrollado en esta tesis, hasta donde sabemos, aborda un problema que no se había tratado en la literatura publicada y, contribuye con un método nuevo y resultados novedosos al campo de estudio.

Cuando se emplea el ESH para estimar conjuntamente el parámetro de Ln K y el estado para un modelo estocástico de flujo y/o transporte, los resultados indican que:

Las magnitudes de los errores de las estimaciones de Ln K, h y c, decrecen cuando se emplean datos de Ln K o h o c. La estimación de Ln K no mejora significativamente empleando datos únicamente de h, mejora más con datos de c y empleando conjuntamente datos de Ln K y h. La estimación de h mejora un poco con datos únicamente de Ln K o de c, mejora más utilizando conjuntamente datos de Ln K y h o Ln K y c. La estimación de c mejora utilizando únicamente datos de Ln K o de h. Los datos de Ln K contribuyen a mejorar más la estimación de h que la de c, los datos de h contribuyen a mejorar más la estimación de Ln K que la de c y los datos de c contribuyen más a mejorar la estimación de Ln K que la de h.

En la comparación de los resultados obtenidos al aplicar el ESH utilizando datos de h, c y h y c, al utilizar dos métodos alternativos para generar realizaciones de Ln K (SGSIM y LHS), se puede concluir lo siguiente:

- Para ambos métodos de simulación, las estimaciones del parámetro Ln K y del estado (h y c), usando datos de h o c, o datos de h y c, las magnitudes de los errores decrecen cuando un dato es empleado en la estimación.
- Con ambos métodos los errores son comparables, sin embargo es importante notar que el porcentaje de reducción del ECM con respecto al ECM inicial del parámetro de Ln K y del estado (h), en casos donde la estimación se realizó con mediciones de h, h y c, el porcentaje de reducción fue más grande usando SGSIM que LHS. Sin embargo en casos donde la estimación de c se realizó con mediciones de h, c, y h y c el porcentaje de reducción para la estimación de c usando LHS, fue mayor que usando SGSIM.

Del análisis de sensibilidad de las estimaciones obtenidas con el ESH usando datos de carga hidráulica y concentración, a errores en la media de K y la varianza de Ln K (utilizados para generar las realizaciones de K), los resultados mostraron que si los valores reales de la media de K y la varianza son es 1.6 metros/día y 1, respectivamente, entonces:

- El ESH genera buenas estimaciones de Ln K, h y c, para casi todos los valores de media de K considerados (0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2, 3.6 y 4.0 metros/día). No genera una buena estimación de Ln K únicamente cuando la media de K es igual a 0.4.
- El ESH genera buenas estimaciones de Ln K, h y c para todos los valores de varianza del Ln K considerados (0.25, 0.50, 0.75, 1.0, 1.25, 1.50, 1.75, 2.0, 2.50 y 3.0).
- Como el valor de media más pequeño que se utilizó fue de 0.4 metros/día y no existen valores intermedios entre 0.4 y 0.8 metros/día, se recomienda realizar trabajo futuro para determinar forma más completa para qué valores pequeños de la media de K el ESH no genera buenas estimaciones de Ln K.

Se concluye que la adaptación del método de Herrera y Pinder al diseño óptimo de redes de monitoreo de los niveles de agua subterránea realizada e implementada en esta tesis

doctoral en un caso de estudio sintético, tiene buenas perspectivas para ser aplicado en el diseño de redes de los niveles de agua subterránea en casos de estudio reales. Sin embargo, si este fuera el caso se requiere usar, además del criterio de optimización que incluye el método, criterios hidrogeológicos en el diseño de la red, tales como: geomorfología de la zona de estudio, zonas de fracturas, áreas de recarga y descarga, naturaleza de los límites de la unidad hidrogeológica, la relación acuífero río.

En el trabajo realizado, se identificó que el proceso del ESH de actualización de la estimación con datos no requiere un alto costo computacional. Sin embargo, el tiempo requerido para calcular la estimación y matriz de covarianza espacio temporal a priori pudiera ser una limitante para la aplicabilidad del método a problemas reales. Pensamos que este tiempo se podría reducir con: 1) métodos como el LHS que reducen el número de realizaciones requeridas para obtener la convergencia; 2) Las nuevas computadoras son más rápidas y tienen varios procesadores; 3) Se identificó que en el programa GWQMonitor, el proceso que calcula la matriz de covarianza no era eficiente por lo que recientemente se modificó. Además, se recomienda emplear cómputo en paralelo para optimizar el programa.

Aunque se creía que el ESH no tenía grandes posibilidades de aplicarse en problemas relacionados con el agua subterránea, del análisis del estado del arte realizado en esta tesis doctoral y los resultados obtenidos, podemos concluir que gracias al incremento en el poder computacional, este tipo de métodos actualmente tienen buenas perspectivas de aplicarse en casos de estudio reales en agua subterránea.

En trabajos futuros se podría utilizar el método propuesto para estimar algún otro parámetro, como puede ser la recarga del acuífero, o también estimar la recarga y el Ln K de forma conjunta.

El método de estimación propuesto, puede ser utilizado ampliamente en los próximos años debido a que se está incrementando el uso de dispositivos que permiten la medición de la carga hidráulica en tiempo real, además de que existen más opciones en tecnologías para la recolección de muestras de concentración de contaminantes de agua subterránea, por lo que estos datos se pueden emplear para estimar con mayor certidumbre el parámetro del logaritmo natural de la conductividad hidráulica, así como la carga hidráulica y/o la concentración.
Bibliografía

Ababou, R. (1988). Three-dimensional flow in random porous media. Ph.D. diss. Cambridge, MA,: Massachusetts Inst. of Technology.

Ahmed, S. (2004). Geostatistical estimation variance approach to optimizing an air temperature monitoring network. Water Air and Soil Pollution , 158(1):387-399.

Armando, A. (1994). Introducción al tratamiento de series temporales: aplicación a las ciencias de la salud. Ediciones Díaz de Santos.

ASCE (American Society of Civil Engineers. (2003). The State of the Art. USA: Task Committee on the State of the Art in Long-term Groundwater Monitoring Design.

Babu, D., Pinder, G., Niemi, A., Ahlfeld, D. P., & Stothooff, A. (1993). Chemical transport by three dimensional groundwater flows (PTC-Princeton Transport Code),. Princeton, N.J.: Rep. 84-WR-3, Princeton University, Department of Civil Engineering.

Bailey, R., & Baù, D. (2010). Ensemble smoother assimilation of hydraulic head and return flow data to estimate hydraulic conductivity distribution. Water Resources Research , Vol. 46, W12543, doi:10.1029/2010WR009147.

Barrera, R. S. (Enero de 2007). Validación de Algoritmos para Simulaciones de Atributos Geo-Minero-Metalúrgicos. . Recuperado el 2011 de Agosto de 2, de Cybertesis, Universidad de Chile : http://www.cybertesis.cl/sdx/uchile/fiche.xsp?base=documents&id=uchile.2007.barrera_sr-principal

Bierkens, M., Knotters, M., & Hoogland, T. (2001). Space–time modeling of water table depth using a regionalized time series model and the Kalman filter. . Water Resources Research.

Bras, R.L. (1978). Sampling Network Design in Hydrology and Water Quality: A Review of Linear Estimation Theory Applications,. Proceedings, American Geophysical Union Chapman Conference on Applications of Kalman Filter to Hydrology, Hydraulics and Water Resources. Pittsburgh.

Briseño, J., & Herrera, G. (2007). Space-time Design of Piezometrics Groundwater Monitoring Networks (pp: 91-98). Editado por Candela, L., Vanilla, I., Agar, P., Bedbug, E., Trivia, M., Vanclooster, M., and Lopez-Geta, J.A.: Water Pollution in natural Porous media at different scales. Assessment of fate, impact and indicators. WAPO2. Instituto Geológico y Minero de España, Madrid., ISBN 10: 84-7840-676-X, ISBN 13: 978-84-7840-676-0, p.776.

Briseño, J., & Herrera, G. (2008). Parameter estimation of stochastic flow and transport models for the design of groundwater quality monitoring networks (pp: 96-102). Proceedings of the 1st. IWA Mexico National Young Water Professionals Conference. Cd. de México: editado por Orta Ledesma MT, Editores de Victorica, ISBN: 978-970-32-5515-3, p.376. Briseño, J., & Herrera, G. (2008). Parameter estimation of stochastic flow models for the design of groundwater monitoring networks. Colorado, U.S.A: Green Center on the Colorado School of Mines Campus in Golden.

Briseño, J., & Herrera, G. (2010). A space-time ensemble Kalman filter for state and parameter estimation of groundwater transport models. 2-7 May 2010. General Assembly. Vienna, Austria: European Geophysics Union. The poster presented by J. Briseño at the European Geophysics Union 2010 received the award Young Scientist Outstanding Poster Paper, Hydrological Sciences Division, Disponible en: http://www.egu.eu/awards-medals/award/union-ospaward/2010/jessica-briseno.html

Briseño, J., & Herrera, G. (2011). Sensitivity analysis of state and parameter estimates obtained using a space-time ensemble Kalman filter for groundwater transport models. General Assembly 2011. Viena, Austria: European Geophysics Union.

Briseño, J., Herrera, G. S., & Junez, H. E. (2011). Método para el diseño óptimo de redes de monitoreo de los niveles del agua subterránea. Tecnología y Ciencias del Agua, , II (4), vol. II, núm. 4, octubre-diciembre de 2011.

Cahill, A., Ungaro, F., Parlange, M., Mata, M., & Nielsen, D. (1999). Combined spatial and Kalman filter estimation of optimal soil hydraulic properties. Water Resources Research , 35, 1079–1088.

Cameron, K., & Hunter, P. (2000). Optimization of LTM Networks Using GTS: Statistical Approaches to Spatial and Temporal Redundancy, Tech. Rep.,. Air Force Center for Environmental Excellence, Brooks AFB, Tx,.

Castelan. (2000). Análisis y Perspectiva del Recurso Hídrico en México. Centro del TercerMundo para el Manejo del Agua. México.: Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo, International Water Resources Association.

Chander, S., Kapoor PN, P., & Goyal, S. (1981). Aquifer parameter estimation using Kalman filters. Jour. of Irrig. and Drain. Div., ASCE, , 107(IR1), 25±33.

Chen, Y., & Zhang, D. (2006). Data assimilation for transient flow in geologic formations via ensemble Kalman filter. Advances in Water Resources, 29 (8), 1107-1122.

Deutsch, C., & Journel, A. (1998). GSLIB Geostatistical Software Library and User's Guide. 2nd ed. New York: Oxford University, Press, 1998, 368 pp.

Dokou, Z., & Pinder, G. (2009). "Optimal search strategy for the definition of a DNAPL source.. Journal of Hidrology, Vol. 376, Issue 3-4, pages 542-556.

Drécourt, J. P., Madsen, H., & Rosbjerg, D. (2006). Bias aware kalman filters: Comparison and improvements. Advances in Water Resources, , 29, 707–718.

Eigbe, U., Beck, M. B., Wheater, H. S., & Hirano, F. (1998). Kalman filtering in groundwater flow modelling: problems and prospects. Stochastic Hydrology and Hydraulics, v12. 15-32.

Eppstein, M., & Dougherty, D. E. (1996). Simultaneous estimation of transmissivity values and zonation. Water Resources Research , 32(11), 3321–3336.

Esquivel, V. E. (2008). Aplicación geoestadística al rediseño de la red de monitoreo en el acuífero de la Comarca Lagunera, Coah. Dgo., México, Tesis para obtener el grado de Maestría. México: Universidad nacional Autónoma de México.

Evensen, G. (1994). Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res. , 99, 10143-10162, .

Evensen, G. (2003). The Ensemble Kalman Filter: Theoretical formulation and practical implementation. Ocean Dynamic , 53(4):343–367.

Evensen, G. (2007). Data Assimilation: The Ensemble Kalman Filter. Springer Verlag.

Evensen, G. (2009). Data assimilation-The ensemble Kalman filter. . En G. Evensen. Second Edition, Springer-Verlag,.

Faisal, K., Zaidi, S., & Dewandel, B. (2007). Optimizing a piezometric network in the estimation of the groundwater budget: a case study from a crystalline-rock watershed in southern India,. Hydrogeology Journal, vol. 15, 6, 2007, 1131-1145 PP.

Ferraresi, M., Todini, E., & Vignoli, R. (1996). A Solution to the Inverse Problem in Groundwater Hydrology Based on Kalman Filtering. J. Hydrol., 175, 567–581.

Franssen, H. H., & Kinzelbach, W. (2008). Real-time groundwater flow modelling with the Ensemble Kalman Filter: Joint estimation of states and parameters and the filter inbreeding problem. Water Resources Research , 44 (9), W09408.

Graham y McLaughlin. (1989a). Graham WD, McLaughlin DB (1989a) Stochastic analysis of nonstationary subsurface solute transport, 1, Unconditional moments. Water Resour. Res., 25(2), 215±232.

Graham, W., & McLaughlin, D. (1989b). Stochastic analysis of nonstationary subsurface solute transport, 2, Conditional moments. Water Resources Research , 25(11), 2331±2355.

Graham y McLaughlin. (1991). Graham WD, McLaughlin DB (1991) A stochastic model of solute transport in groundwater: Application to the Borden, Ontario tracer test. Water Resour. Res., 27(6), 1345±1359.

Graham, W., & Tankersley, C. (1993). Forecasting piezometric head levels in the Floridan aquifer: A Kalman Filter approach. Water Resources Research , 29(11), 3791±3800.

Gu, Y., & Oliver, D. S. (2007). An Iterative Ensemble Kalman Filter for Multiphase Fluid Flow Data Assimilation. SPEJ Society of Petroleum Engineers Journal , 108438, 438-446.

Hantush, M., & Jacob, C. (1955). Nonsteady radial flow in an infinite leaky aquifer. Trans. of American Geophysical Union, 36, 95±100.

Herrera, G. S. (1998). Cost Effective Groundwater Quality Sampling Network Design, Ph. D. Dissertation. Vermont: University of Vermont.

Herrera, G. S., Briseño, J. (2010). Hydraulic conductivity and state estimation for stochastic flow and transport models (pp: 781-784). Editado por Birkle, P., Torres-Alvarado, I.S. Water Rock Interaction. CRC Press Taylor & Francis, Leiden, Netherlands, ISBN 978-0-415-60426-0, ISBN: 978-1-4398-6299-5, p. 1008.

Herrera, G., & Pinder, G. (2005). Space-time optimization of groundwater quality sampling networks. Water Resources Research , 41, W12407. doi:10.1029/2004WR003626.

Herrera, G., Guarnaccia, J., Pinder, G., & Simuta-Champo, R. (2001). Diseño de redes de monitoreo de la calidad del agua subterránea eficientes. Proceedings of the 2001 International Symposium on Environmental Hydraulics. Arizona, U.S.A.

Hirano, F. (1985). Estimating spatial distribution of both transmissibility and groundwater level over a large area. Special report No. 17, . Tokyo, Japan: Institute of Technology, Shimizu Corporation.

Jazwinski, A. H. (1970). Stochastic processes and filtering theory. Academic Press.

Kalman, R. E. (1960). A New Approach to Linear Filtering and Prediction Problems, Transactions of the ASME (Vol. 82). Journal of Basic Engineering.

Kalnay, E. (2003). Atmospheric Modeling, Data Assimilation and Predictability. New York: Cambridge Univ. Press.

Konikow, L. (1996). Uso de modelos númericos para simular el flujo y el transporte subterránea. USGS-Instituto Geológico Norteamericano,. Reston, Virginia, USA.: Editado por Isótopos Ambientales en el Ciclo Hidrológico IGME.

Kumar, S., Sondhi, S. K., & Phogat, V. (2005). Network design for groundwater level monitoring in Upper Bari Doab canal tract, Punjab, India. Irrigation and Drainage, 54, 431-442 pp.

Liu, G., Chen, Y., & Zhang, D. (2008). Investigation of flow and transport processes at the MADE site using ensemble Kalman filter. Advances in Water Resources, 31 (7), 975-986.

Loaiciga, H. A., Charbeneau, R. J., Everett, L. G., Fogg, B. F., Hobbs, B. F., & Rouhani, S. (1992). Review of ground-water quality monitoring network design. Journal of Hydraulic Engineering, 118 (1), 11-37.

Loaiciga, H. (1989). An optimization approach for groundwater quality monitoring network design,. Water Resources Research, vol. 25, 8, 1989, 1771-1782 pp.

Manchuk, J., Leuangthong, O., & Deutsch, C. (2004). A New Approach to Direct Sequential Simulation that Accounts for the Proportional Effect: Direct Lognormal Simulation. Sixth Annual Report of the Centre for Computational Geostatistics, Department of Civil & Environmental Engineering, University of Alberta, 104-1, 104-22.

Manchuk, J., Leuangthong, O., & Deutsch, C. (2004). A New Approach to Direct Sequential Simulation that Accounts for the Proportional Effect: Direct Lognormal Simulation. Sixth Annual Report of the Centre for Computational Geostatistics: University of Alberta.

Maréchal, J., Dewandel, B., Ahmed, S., Galeazzi, L., & Zaidi, F. K. (2006). Combining the groundwater budget and water table fluctuation methods to estimate specific yield and natural recharge. Journal of Hydrology, vol. 329, 1-2, 2006, pp. 281-293.

McDonald, M., & Harbaugh, A. (1984). A modular three-dimensional finite-difference groundwater flow model: U.S. Geological Survey Open-File Report 83-875,. Reston, Va., USA: U.S. Geol. Surv.

McLaughlin et al. (1993). McLaughlin DB, Reid LB, Shu-Guang L, Hyman J (1993) A stochastic method for characterizing groundwater contamination. Groundwater, 31(2), 237±249.

McLaughlin. (1995). McLaughlin, D. Recent advances in hydrologic data assimilation, In U.S. National Report to the IUGG (1991-1994), Reviews of Geophysics, Supplement, 977-984, 1995. (invited).

McLaughlin, D. B. (1976). Application of Kalman filtering to groundwater basin modeling and prediction, . Proceedings of the IIASA Workshop on Recent Developments in Real Time Forecasting/Control of Water Resource Systems, (págs. 109–123). Pergamon, New York: edited by E. F. Wood.

McLaughlin, & McLaughlin, D. (1979). Hanford groundwater modeling ± a numerical comparison of Bayesian and Fisher parameter estimation techniques. Technical Report RHO-C-24. Rockwell Hanford Operations.

Mehra, R. (1972). Approaches to Adaptive Filtering. Austin, Tex,: IEEE. S-CS, Adaptive and learning systems. Pattern. Recognition Committee.

Mendoza-Cázares, E. Y., & Herrera-Zamarrón, G. (2007). Estimación multivariada espaciotiempo de la carga hidráulica en el Valle de Querétaro-Obrajuelo. Ingeniería hidráulica en México, Vol. XXII, núm. 1, enero-marzo de 2007, pp. 63-80.

Moradkhani, H., S., S., Gupta, H., & Houser, P. (2005). Dual State-Parameter Estimation of Hydrological Models using Ensemble Kalman Filter. Advances in Water Resources , 28, 2,135-147.

Nævdal, G., Johnsen, L. M., Aanonsen, S. I., & Vefring, E. H. (2005). Reservoir Monitoring and Continuous Model Updating Using Ensemble Kalman Filter. SPE Journal, 10(1): 66–74 SPE-84372-PA. doi: 10.2118/84372-PA.

Nan, T., & Wu, J. (2010). Groundwater parameter estimation using the ensemble Kalman filter with localization. Hydrogeology Journal.

Neuman, S.P. and P.A. Witherspoon, 1969. Theory of flow in a confined two aquifer system, Water Resources Research, vol. 5, no. 4, pp. 803-816.

Nowak, W. (2010). Measures of parameter uncertainty in geostatistical estimation and geostatistical optimal design. Math. Geosci., 42 (2), doi:10.1007/s11004-009-9245-1.

Nunes, L. M., Cunha, M. C., & Ribeiro, L. (2004). Groundwater monitoring network optimization with redundancy reduction. Environmental Monitoring and Assessment, 82, 1-21.

Nuñes, J. E., & Barón, J. H. (1999). Técnicas estadísticas avanzadas en el análisis de grandes modelos computacionales. MECOM. Mendoza Argéntina.: MECOM.

PNH. (2007-2012). Programa Nacional Hidráulico . México: Comisión Nacional de Agua, Secretaría de Medio Ambiente y Recursos Naturales.

Pedroza, J. J. (2005). Análisis Comparativo del Desempeño de Cuatro Filtros Predictivos Aplicados al Seguimiento Visual de Objetos, Tesis de Licenciatura. Benemérita Universidad Autónoma de Puebla.

Reichle et al. (2002). Reichle, R., D. McLaughlin, and D. Entekhabi, 2002: Hydrologic data assimilation with the ensemble Kalman filter. Mon. Wea.Rev., 130, 103–114.

Rouhani, S. (1985). Variance reduction analysis. Water Resources Research , 21 (6), 837-846 pp.

Sahuquillo, A., Custodio, E., & Llamas, M. R. (24 de 01 de 2008). La gestión de las aguas subterráneas. Panel Científico-Técnicp de Seguimiento de la Pilítica de Aguas, Fundación Nueva Cultura del Agua. Recuperado el 5 de 02 de 2012, de http://www.unizar.es/fnca/varios/panel/34.pdf

Samper, F., & Carrera, J. (1990). Geoestadística, aplicaciones a la hidrogeología subterránea. Barcelona: Centro Internacional de Métodos Numéricos en Ingeniería.

Schmidtke, K., McBean, E., & Sykes, J. F. (1982). Stochastic estimation of states in unconfined aquifers subject to artificial recharge. Water Resources Research , 18(5), 1519±1530.

Schöniger, A. (2010). Parameter Estimation by Ensemble Kalman Filters with Transformed Data. Diplomarbeit, Institut für Wasserbau, Universität Stuttgart, Zusammenarbeit mit UFZ-Umweltforschungszentrum Leipzig-Halle GmbH. Leipzig.

Simuta-Champo, R. (2005). Modelo en elemento finito para el flujo del acuífero del valle de Querétaro, Tesis de maestría. Jiutepec, Morelos: Universidad Nacional Autónoma de México.

Simuta-Champo, R., & Herrera-Zamarrón, G. (2010). Convergence analysis for Latinhypercube lattice-sample selection strategies for 3D correlated random hydraulic-conductivity fields. Geofísica Internacional, vol. 49, no. 3, 131-140, 2010.

Solera, Á. (2003). El filtro de Kalman. Banco Central de Costa Rica, División Económica, Departamento de Investigaciones Económicas, DIE-02-2003-NT, Nota Técnica, Julio del 2003.

Sorenson, HW. (1985). Kalman filtering: Theory and applications. USA: IEEE Press.

Sun, A. Y., Morris, A. P., & Mohanty, S. (2009a). Comparison of deterministic ensemble Kalman filters for assimilating hydrogeological data. Advances in Water Resources, 32, 280-292.

Te Stroet, C. (1995). Calibration of Stochastic Groundwater Flow Models: estimation of system Noise Statistics and Model Parameters, PhD thesis. Delft: Delft Univ. of Techn.

Theis, & Theis, C. (1935). The relationship between the lowering of piezometric surface and the rate and duration of discharges of a well using groundwater storage. Trans. of American Geophysical Union, 16, 525.

Urquiza, M. (2008). Uso sostenible del agua en la ciudad de Querétaro. Expo Zaragoza 2008. Semana temática: "Agua y servicios de abastecimiento y saneamiento", Eje temático: Foro de los buenos ejemplos. España. Zaragoza junio a septiembre del 2008. Obtenido de http://www.zaragoza.es/contenidos/medioambiente/cajaAzul/27S6-P5-Manuel%20UrquizaACC.pdf

Van Geer, F. (1982). An equation based theoretical approach to network design for groundwater levels using Kalman filters. Proceedings of the Exeter Symposium (págs. Publication No. 136, 241-250). Int. Assoc. Hydrol. Sci.

Van Geer, F., & te Stroet, C. (1990). A Kalman Filter approach to the quantification of the reliability of a groundwater model. In Kovar, K. (ed.) Calibration and reliability in groundwater modelling, ModelCare 90, 467±476. IAHS publication No. 195.

Van Geer, F., & Van Der Kloet, P. (1985). Two algorithms are developed to estimate that parameter groundwater flow problems. Journ. of Hydrology, 40, 1-16.

Van Geer, F., te Stroet, C., & Bierkens, M. (1990). Groundwater modelling in relation to the system's response time using Kalman Filtering. En B. Springer-Verlag (Ed.), Computational methods in subsurface hydrology, Proceedings of the 8th International congress on computational methods in water resources (págs. pp. 23-29.). Venice, Italy,: In:Gambolati et al. (Editors), Proc. of the Eighth Inter. Conference on.

Van Geer, F., Te Stroet, C., & Yangxiao, Z. (1991). Using Kalman Filtering to Improve and Quantify the Uncertainty of Numerical Groundwater Simulations 1. The Role of System Noise and Its Calibration. Water Resources Research , 27, 8, doi:10.1029/91WR00509.

van Leeuwen, P. J., & Evensen, G. (1996). Data assimilation and inverse methods in terms of a probabilistic formulation. Mon. Weather Rev., 124, 2898±2913.

Welch y Bishop. (2002). Welch, G., and G. Bishop. An introduction to the Kalman filtro. Report TR-95-041. Chapel Hill, NC: University of North Carolina, Department of Computer Science.

Wen, X., & Chen, W. (2006). Real-time reservoir model updating using ensemble Kalman filter: The confirming approach, SPEJ Society of Petroleum Engineers Journal , 11(4),431-442.

Wilson, J., Kitanidis, P., & Dettinger, M. I. (1978). State and parameter estimation in groundwater models. AGU Chapman Conference (pág. 657±679.). Pittsburgh, USA: C.L. (ed) Applications of Kalman filter to hydrology, hydraulics and water resources.

Yangxiao, Z., Te Stroet, C., & Van Geer, F. (1991). Using Kalman Filtering to Improve and Quantify the Uncertainty of Numerical Groundwater Simulations 2. Application to Monitoring Network Design,. Water Resources Research , 27, 8, doi:10.1029/91WR00510, 1991.

Zhang. D. (2002). Stochastic Methods for Flow in Porous Media, Coping with Uncertainties, Academic Press, 2002.

Zhang, Y., Pinder, G., & Herrera, G. (2005). Least cost design of groundwater quality monitoring networks,. Water Resources Research, vol. 41, 2005.

Anexo A. Simulación secuencial gaussiana

A1. Teoría sobre el proceso de simulación gaussiana.

El método de simulación secuencial gaussiana genera realizaciones estocásticas que honran un patrón específico de datos, según lo cuantificado por el variograma o la covarianza. Para garantizar que los patrones de datos están reproducidos correctamente, se necesita definir el modelo de probabilidad de las características en todas las posiciones de la malla tomadas juntas, no una por una según lo hecho en kriging. Una distribución conjunta se define como:

$$F(z_1, z_2, ..., z_N) = \Pr(Z(\mathbf{u}_1) \le z_1, ..., Z(\mathbf{u}_N) \le z_N)$$
 Ec. A1

En donde N es el número de los nodos de la malla. Generando una muestra de la distribución que es equivalente a generar una muestra en cada localización individual de la malla. Sin embargo, especificando esta distribución conjunta, se considera la dependencia común entre todos los nodos de la malla tomados de forma conjunta, apuntando a reproducir patrones espaciales según lo definido por este modelo de la distribución conjunta. Puesto que es demasiado difícil matemáticamente definir y dibujar de un modelo de distribución conjunta, confiamos en la descomposición general siguiente:

$$\Pr(Z(\mathbf{u}_{1}) \le z_{1},...,Z(\mathbf{u}_{N}) \le z_{N}) = \Pr(Z(\mathbf{u}_{N}) \le z_{N} | Z(\mathbf{u}_{1}) \le z_{1},...,Z(\mathbf{u}_{N-1}) \le z_{N-1}) \times ...$$

...×
$$\Pr(Z(\mathbf{u}_{2}) \le z_{2} | Z(\mathbf{u}_{1}) \le z_{1}) \times \Pr(Z(\mathbf{u}_{1}) \le z_{1})$$

Ec. A2

En donde estados de cualquier distribución conjunta, pueden descomponerse en un producto de la distribución condicional de N, por lo tanto realizaciones de una distribución conjunta son equivalentes a las realizaciones de distribuciones condicionales uni-variadas de N. Esta descomposición es la base para la simulación secuencial, una de las técnicas geoestadísticas más usadas de la simulación. Permite generar una sola realización

estocástica, en cada nodo de la malla, hasta que la malla entera es llenada. En la simulación secuencial, se simula cada nodo basándose en nodos previamente simulados.

La simulación secuencial condicional se refiere a la técnica en donde teniendo cualquier cantidad de datos *(n), c*ada distribución condicional se basa en respetar los valores de los nodos previamente simulados y datos en la malla:

$$\Pr(Z(\mathbf{u}_{1}) \le z_{1}, \dots, Z(\mathbf{u}_{N}) \le z_{N} | (n)) = \Pr(Z(\mathbf{u}_{N}) \le z_{N} | (n+N-1)) \times \dots$$
$$\dots \times \Pr(Z(\mathbf{u}_{2}) \le z_{2} | (n+1)) \times \Pr(Z(\mathbf{u}_{1}) \le z_{1} | (n))$$
Ec. A3

El tipo de las distribuciones condicionales en la Ec. (A2) y la forma en que se estiman sus parámetros, determina el tipo de algoritmo secuencial de la simulación. El contorno general de los algoritmos secuenciales de la simulación para simular una sola realización se designa como sigue:

- 1. Asignar cualquier dato (n) a la malla.
- 2. Definir una trayectoria aleatoria que visite todos los nodos u en la malla.
- 3. Relacionando sobre todos los nodos *u_i*
 - a. Construir una distribución condicional

 $F_{Z}(\mathbf{u}_{i}, z \mid (n+i-1)) = \Pr(Z(\mathbf{u}_{i}) \le z \mid (n+i-1))$ Ec. A4

b. Dibujar un valor simulado $z(u_i)$ de la distribución condicional

$$F_{Z}(\mathbf{u}_{i}, z \mid (n+i-1))$$
 Ec. A5

c. Agregar el valor simulado al conjunto de datos (n+i-1)

4. Fin de la simulación

A2. Simulación secuencial gaussiana SGSIM

1.2

La simulación secuencial gaussiana es la única simulación secuencial en donde explícitamente se supone una forma matemática para la distribución conjunta (A1). Una suposición es que la distribución conjunta es normal multivariada. Esta suposición se basa puramente en conveniencia matemática, de hecho, cualquier distribución condicional bajo el modelo multi-Gaussiano es también gaussiano, por lo tanto está determinado completamente por dos parámetros: la media y la varianza. Esto exige que todas las

distribuciones condicionales bajo la descomposición (A1) sean también gaussianas. Por otra parte, resulta que el medio de cada distribución condicional está expresado como una combinación lineal de nodos previamente simulados

$$E[Z(\mathbf{u}_{i}) | Z(\mathbf{u}_{i-1}) = z_{i-1}, \dots, Z(\mathbf{u}_{1}) = z_{1}] = \sum_{j=1}^{i-1} \lambda_{j}(\mathbf{u}_{i}) z(\mathbf{u}_{j}) = z_{SK}^{*}(\mathbf{u}_{i})$$
Ec. A6

En donde se determinan los pesos $\lambda_j(\mathbf{u}_i)$ usando kriging simple y donde la varianza se iguala a la varianza del kriging

$$Var[Z(\mathbf{u}_{i}) | Z(\mathbf{u}_{i-1}) = z_{i-1}, \dots, Z(\mathbf{u}_{1}) = z_{1}] = \sigma^{2} s_{K}(\mathbf{u}_{i})$$
 Ec. A7

Dado estos resultados matemáticos, el algoritmo de la simulación secuencial gaussiana se define como sigue:

- 1. Transformación de los datos de la muestra a normales.
- 2. Asignar los datos (n) a la malla.
- 3. Definir una trayectoria aleatoria que visite todos los nodos u
- Realizar una conexión sobre todos los nodos u_i.
 - a. Construir una distribución condicional gaussiana.

$$G(\mathbf{u}_i, z \mid (n+i-1)) = G(\frac{z - z_{SK}(\mathbf{u}_i)}{\sigma_{SK}(\mathbf{u}_i)})$$
Ec. A8

b. Dibujar el valor simulado $z(u_i)$ de la distribución condicional

$$G(\mathbf{u}_i, z \mid (n+i-1))$$
 Ec. A9

- c. Agregar el valor simulado al del conjunto de datos (n+i-1)
- 5. Fin de la simulación.
- 6. Transforme los datos de la simulación entera de nuevo al histograma original.

Es importante mencionar que para aplicar una simulación secuencial gaussiana se requiere realizar la transformación del histograma antes y después, puesto que una suposición multi-gaussiana incluye también la suposición de que los datos del histograma son normales.

Figura A. 1 Ciclo de bibliotecas del GSlib, para generar Simulaciones Condicionadas

A3. Análisis geoestadístico con GSLIB.

El análisis geoestadístico se puede realiza para datos empleando las librerías del software geoestadístico conocido como GSLIB (Geostatistical Software Library) generado por Deutsch y Journel (1998). Este software permite trabajar en problemas de geoestadística como la generación de variogramas, trabajar con estimación lineal (kriging), y simulación estocástica. En la figura A1 se determinan los pasos a seguir y los programas para realizar el análisis geoestadístico de un parámetro y obtener las simulaciones condicionadas con datos, empleando las bibliotecas del GSLIB.

Para la aplicación del GSLIB, los archivos ejecutables así como el formato del archivo de introducción de datos, con extensión *.par, se encuentran disponibles en la pagina del Geostatistical Software Library <u>www.gslib.com</u>. Para una descripción más detallada se recomienda consultar el manual del GSLIB (Deutsch & Journel, 1998).

El nombre de los programas empleados para el análisis geoestadístico y su descripción se muestran en el Cuadro A1.

Cuadro A1. 1 Librerías del GSLIB p	para el análisis Geoestadístico
------------------------------------	---------------------------------

-	
LOCMAP	Genera mapas de localización de un archivo de datos que contiene las coordenadas (x,y) así como el valor de los elementos a graficar. Este programa permite graficar en escala de grises o en escala de colores.
HISTPLT	Genera Histogramas, que son usados para ver las características descriptivas de la distribución. Es un gráfico de barras donde en las abscisas aparecen los límites de las clases y en las ordenadas las frecuencias correspondientes a cada clase. Se genera a partir de un archivo de texto.
GAMV	Genera el semivariograma experimental a partir de un archivo de texto que contiene los parámetros necesarios.
VARGPLT	Genera el grafico del semivariograma experimental calculado con el archivo de salida generado por el programa GAMV.
VMODEL	Genera el modelo del semivariograma y escribe los archivos de salida con el mismo formato que el programa GAMV.
KT3D	Genera el cálculo del kriging a partir de un archivo de texto, en el que se incluyen los datos obtenidos del semivariograma experimental, así como sus respectivas coordenadas, las dimensiones de la malla, y finalmente el tipo de kriging a estimar. Este programa genera un archivo de salida que puede graficarse empleando el programa PIXELPLT.
SGSIM	Genera simulaciones secuénciales gaussianas, a partir de un archivo de texto con datos o sin el, así como demás datos generados del semivariograma experimental y el kriging. Este programa genera un archivo de salida que puede graficarse empleando el programa PIXELPLT.
PIXELPLT	Genera gráficos a través de un conjunto de datos generados en el archivo de salida al calcular el kriging con el programa KT3D o al realizar una simulación con el programa SGSIM. Este programa permite graficar en escala de grises o en escala de colores.
DECLUST	Calcula los valores de los pesos para realizar la transformación de datos a normales con NSCORE.
NSCORE	Calcula los valores normales para los datos de cualquier histograma arbitrario.

Anexo B. Calculo de los errores de los Casos de estudio del Capítulo 8 y 9.

Los círculos de las gráficas de este anexo muestran el tiempo en donde existe aporte de datos para realizar la estimación del parámetro Ln K y del estado (h y c). En la figura siguiente se presenta la descripción de resultados de las tablas de los errores de estimación de los capítulos 8 y 9, mostrados en este anexo.

Estimación inicial (E0) en el tiempo 1

El recuadro gris es el EM de la estimación en el tiempo 1, realizada con 50 datos de h y c del tiempo 1 (filtrado)

EM de la estimación en los tiempos 2 al 6, realizada con 250 datos de h y c del tiempo 1 (predicción)

Est.	No.	Tiem-			/ /			E	М					
ESI.	acum.	ро	1	%Red	2	%Red	3	%Red	4	%Red	5	%Red	6	%Red
	0	E0	-0.114	0.00	-0.116	0.00	-0.117	0.00	-0.118	0.00	-0.119	0.00	-0.120	0.00
	50	E1	-0.001	99.24	0.000	99.89	0.001	99.02	0.002	88.18	0.003	97.35	0.004	96.54
н	100	E2	-0.011	90.82	-0.010	91.14	-0.010	91.45	-0.010	91.76	-0.009	92.06	-0.009	92.36
	150	E3	-0.016	85.84	-0.016	85.85	-0.017	85.85	-0.017	85.87	-0.017	85.87	-0.017	85.88
	200	E4	-0.023	79.60	-0.024	79.24	-0.025	78.90	-0.025	18.55	-0.026	78.21	-0.027	77.89
	250	E5	-0.025	78.20	-0.026	77.66	-0.027	77.14	-0.028	76.62	-0.028	76.12	-0.029	75.62
	300	E6	-0.025	78.00	-0.026	77.42	-0.027	76.86	-0.028	76.30	₹-0.029	75.75	-0.030	75.22

Estimación inicial (E0) en el tiempo 5

EM de la estimación en los tiempos 1 al 4, realizada con 50 datos de h y c del tiempo 5 (suavizado).

El recuadro gris es el EM de la estimación en el tiempo 5, realizada con 50 datos de h y c del tiempo 5 (filtrado).

EM de la estimación en el tiempo 6, realizada con 50 datos de h y c del tiempo 5 (predicción).

- La columna **Est**, indica el parámetro y el estado al que corresponden el EM y el ECM.
- La columna No datos acum., indica el número de datos acumulados de h y c que fueron empleados para realizar la estimación con el ESH (50 datos de h y c en cada tiempo).
- El renglón Tiempo, indica el resultado del EM y del ECM de la estimación con el ESH en los 6 tiempos (de E1 hasta E6). E0 es la estimación inicial.
- Filtrado: es la estimación del parámetro y del estado, realizada con el ESH en el tiempo en donde existe aporte de datos de h y/o c (presente).
- Suavizado: es la estimación del parámetro y del estado, realizada con el ESH en los tiempos previos al tiempo en donde existe aporte de datos de h y/o c (pasado).
- Predicción: es la estimación del parámetro y del estado, realizada con el ESH en los tiempos posteriores al tiempo en donde existe aporte de datos de h y/o c (futuro).

Eat	No.	Tiem-	E	м	EC	м								
ESI.	datos	ро	1	%Red	1	%Red	Caso 1	.1 Estima	ación con 2	25 datos o de	de h en ca h)	da tiempo	o (Total 15	0 datos
	0	E0	0.108	0.0	0.9872	0.0								
	25	E1	0.093	13.76	0.9052	8.31		EM- En	or medio			Covarian	79 SGSIM	
	50	E2	0.081	24.88	0.8975	9.09						Covariani	28 3031101	
Ln K	75	E3	0.069	36.11	0.8975	9.09	ECM	- Error ci	uadrático r	nedio	V	arianza d	oln K – 1	0
	100	E4	0.058	45.93	0.8886	9.99	LOW			neulo	v			.0
	125	E5	0.050	53.61	0.8812	10.74	% Red	= Porcen	taie de rec	lucción	м	edia de K	(= 1.6 m/d	ía
	150	E6	0.044	58.71	0.8755	11.31	701100						- 1.0 11/4	
Est.	No.	Tiem-		1		1		E	М			1		1
200	datos	ро	1	%Red	2	%Red	3	%Red	4	%Red	5	%Red	6	%Red
	0	E0	-0.112	0.00	-0.114	0.00	-0.115	0.00	-0.117	0.00	-0.118	0.00	-0.120	0.00
	25	E1	-0.009	92.18	-0.008	92.88	-0.007	93.54	-0.007	94.20	-0.006	94.84	-0.005	95.46
	50	E2	-0.007	93.81	-0.007	94.07	-0.007	94.33	-0.006	94.58	-0.006	94.82	-0.006	95.06
h	75	E3	-0.007	94.08	-0.007	94.15	-0.007	94.22	-0.007	94.30	-0.007	94.37	-0.007	94.44
	100	E4	-0.007	93.78	-0.007	93.78	-0.007	93.79	-0.007	93.79	-0.007	93.78	-0.007	93.79
	125	E5	-0.007	93.68	-0.007	93.65	-0.007	93.62	-0.007	93.60	-0.008	93.57	-0.008	93.54
	150	E6	-0.007	93.79	-0.007	93.74	-0.007	93.71	-0.007	93.67	-0.008	93.62	-0.008	93.59
	0	E0	-0.841	0.00	-1.613	0.00	-1.852	0.00	-1.813	0.00	-1.666	0.00	-1.508	0.00
	25	E1	-0.799	4.97	-1.367	15.26	-1.277	31.07	-0.863	52.41	-0.346	79.25	0.157	89.60
	50	E2	-0.437	48.08	-0.774	52.00	-0.609	67.11	-0.183	89.90	0.331	80.14	0.834	44.71
с	75	E3	-0.312	62.94	-0.560	65.27	-0.361	80.48	0.074	95.91	0.592	64.47	1.100	27.08
	100	E4	-0.297	64.74	-0.524	67.54	-0.312	83.17	0.132	92.70	0.657	60.57	1.172	22.30
	125	E5	-0.310	63.15	-0.536	66.77	-0.319	82.76	0.130	92.83	0.661	60.35	1.182	21.65
	150	E6	-0.326	61.25	-0.557	65.50	-0.339	81.69	0.113	93.77	0.647	61.16	1.172	22.26
Ect	No.	Tiem-						E	СМ					
⊏5ι.	datos	ро	1	%Red	2	%Red	3	%Red	4	%Red	5	%Red	6	%Red
	0	E0	0.564	0.00	0.583	0.00	0.603	0.00	0.622	0.00	0.641	0.00	0.661	0.00
	25	E1	0.224	60.36	0.231	60.35	0.239	60.34	0.247	60.33	0.254	60.33	0.262	60.32
	50	E2	0.221	60.73	0.229	60.71	0.237	60.70	0.244	60.68	0.252	60.67	0.260	60.65
h	75	E3	0.220	61.06	0.227	61.04	0.235	61.01	0.243	60.99	0.250	60.97	0.258	60.95
	100	E4	0.218	61.30	0.226	61.27	0.234	61.24	0.241	61.21	0.249	61.19	0.257	61.17
	125	E5	0.217	61.44	0.225	61.40	0.233	61.37	0.240	61.34	0.248	61.32	0.256	61.29
	150	E6	0.217	61.56	0.224	61.52	0.232	61.49	0.240	61.46	0.247	61.43	0.255	61.41
	0	E0	7.072	0.00	9.450	0.00	8.968	0.00	7.778	0.00	6.653	0.00	5.829	0.00
	25	E1	6.565	7.17	9.344	1.12	9.122	-1.72	8.075	-3.82	7.066	-6.20	6.361	-9.13
	50	E2	6.104	13.69	8.741	7.51	8.557	4.59	7.628	1.93	6.766	-1.70	6.206	-6.47
с	75	E3	5.670	19.82	8.196	13.28	8.045	10.30	7.200	7.43	6.431	3.34	5.953	-2.13
	100	E4	5.325	24.70	7.777	17.70	7.657	14.61	6.875	11.61	6.166	7.32	5.740	1.53
	125	E5	5.083	28.13	7.490	20.75	7.396	17.53	6.657	14.41	5.990	9.97	5.596	4.00
	150	E6	4.924	30.37	7.304	22.72	7.230	19.38	6.521	16.16	5.880	11.62	5.507	5.53

Cuadro B. 1 Cálculo del EM y del ECM de la estimación de Ln K, h y c (Caso 1.1)

Figura B. 1 Gráficas del EM y del ECM de la estimación de Ln K, h y c (Caso 1.1)

Eat	No.	Tiem-	E	м	EC	Ж								
ESI.	datos	ро	1	%Red	1	%Red	Caso 1	.2 Estima	ación con	25 datos o de	de c en ca : c)	ida tiempo	o (Total 15	50 datos
	0	E0	0.108	0.0	0.9872	0.0								
	25	E1	0.122	-13.51	0.9089	7.93		EM_ Err	or modio			Covorion		
	50	E2	0.119	-10.12	0.8363	15.28						Covariani	28 303111	
Ln K	75	E3	0.141	-30.89	0.8363	15.28	ECM	- Error ci	uadrático r	medio	V	arianza d	oln K-1	0
	100	E4	0.126	-16.81	0.8497	13.93	LOW			nealo	•			.0
	125	E5	0.112	-4.08	0.8628	12.60	% Red	= Porcent	taie de rec	ducción	м	ledia de K	⊆ 1.6 m/d	ía
	150	E6	0.108	0.03	0.8601	12.87								
Est.	No.	Tiem-		[1		[E	м				[
	datos	ро	1	%Red	2	%Red	3	%Red	4	%Red	5	%Red	6	%Red
	0	E0	-0.112	0.00	-0.114	0.00	-0.115	0.00	-0.117	0.00	-0.118	0.00	-0.120	0.00
	25	E1	-0.146	-30.28	-0.149	-31.04	-0.152	-31.78	-0.154	-32.51	-0.157	-33.22	-0.160	-33.90
	50	E2	-0.105	6.72	-0.106	6.62	-0.108	6.53	-0.109	6.43	-0.111	6.34	-0.112	6.25
h	75	E3	0.033	70.25	0.036	68.00	0.039	65.82	0.042	63.69	0.045	61.61	0.048	59.58
	100	E4	0.046	59.28	0.048	57.35	0.051	55.47	0.054	53.62	0.057	51.83	0.060	50.08
	125	E5	0.043	62.05	0.045	60.64	0.047	59.26	0.049	57.91	0.051	56.60	0.053	55.33
	150	E6	0.052	53.79	0.054	52.37	0.056	50.97	48.29	0.063	47.00			
	0	E0	-0.841	0.00	-1.613	0.00	-1.852	0.00	-1.813	0.00	-1.666	0.00	-1.508	0.00
	25	E1	-0.144	82.88	-0.362	77.55	-0.438	76.37	-0.444	75.50	-0.436	73.83	-0.450	70.14
	50	E2	-0.058	93.08	-0.186	88.44	-0.293	84.19	-0.445	75.43	-0.637	61.76	-0.856	43.24
с	75	E3	-0.030	96.47	-0.030	98.17	0.047	97.47	0.061	96.64	-0.001	99.91	-0.125	91.73
	100	E4	-0.050	94.10	-0.042	97.42	0.071	96.17	0.146	91.93	0.156	90.61	0.110	92.70
	125	E5	-0.089	89.43	-0.084	94.78	0.023	98.77	0.101	94.45	0.129	92.26	0.116	92.33
	150	E6	-0.084	90.07	-0.071	95.58	0.038	97.94	0.114	93.69	0.143	91.44	0.134	91.10
Fst	No.	Tiem-			-			EC	СМ	-	-	-		
200	datos	ро	1	%Red	2	%Red	3	%Red	4	%Red	5	%Red	6	%Red
	0	E0	0.564	0.00	0.583	0.00	0.603	0.00	0.622	0.00	0.641	0.00	0.661	0.00
	25	E1	0.572	-1.37	0.591	-1.37	0.611	-1.36	0.630	-1.36	0.650	-1.36	0.669	-1.35
	50	E2	0.542	3.91	0.560	3.90	0.579	3.89	0.598	3.88	0.616	3.88	0.635	3.87
h	75	E3	0.402	28.69	0.416	28.61	0.431	28.53	0.445	28.46	0.459	28.39	0.473	28.33
	100	E4	0.384	31.93	0.397	31.84	0.411	31.75	0.425	31.67	0.439	31.59	0.452	31.52
	125	E5	0.398	29.35	0.413	29.25	0.427	29.16	0.441	29.07	0.455	28.99	0.470	28.92
	150	E6	0.393	30.24	0.407	30.14	0.421	30.05	0.435	29.97	0.450	29.89	0.464	29.82
	0	E0	7.072	0.00	9.450	0.00	8.968	0.00	7.778	0.00	6.653	0.00	5.829	0.00
	25	E1	1.906	73.05	3.820	59.57	4.311	51.93	4.224	45.69	3.994	39.96	3.814	34.56
	50	E2	1.374	80.57	2.236	76.34	2.279	74.58	2.191	71.83	2.218	66.66	2.396	58.90
с	75	E3	1.212	82.86	1.853	80.39	1.866	79.19	1.749	77.51	1.691	74.59	1.739	70.17
	100	E4	1.266	82.10	1.916	79.72	1.838	79.50	1.630	79.05	1.469	77.92	1.382	76.29
	125	E5	1.304	81.56	1.874	80.17	1.764	80.33	1.556	80.00	1.405	78.89	1.316	77.43
	150	E6	1.314	81.41	1.855	80.37	1.738	80.62	1.538	80.23	1.395	79.03	1.312	77.49

Cuadro B. 2 Cálculo del EM y del ECM de la estimación de Ln K, h y c (Caso 1.2)

Figura B. 2 Gráficas del EM y del ECM de la estimación de Ln K, h y c (Caso 1.2)

Eat	No.	Tiem-	E	м	EC	м								
ESI.	datos	ро	1	%Red	1	%Red	Caso 1	.3 Estim	ación con (Total 150	25 datos) datos de	de h y 25 h y 150 d	datos de atos de c	c en cada)	tiempo
	0	E0	0.108	0.0	0.9872	0.0							-	
	50	E1	0.112	-3.77	0.8472	14.18		EM- En	or medio			Covarian	72 SGSIM	
	100	E2	0.080	26.08	0.7961	19.36			or medio			Covariani	28 000101	
Ln K	150	E3	0.071	34.02	0.7961	19.36	ECM	- Error ci	uadrático r	nedio	V	arianza d	oln K-1	0
	200	E4	0.063	41.63	0.7944	19.53	EOW			liculo			c Einte T	.0
	250	E5	0.051	52.40	0.7941	19.56	% Red	= Porcen	taie de rec	lucción	м	ledia de K	(= 1.6 m/d	ía
	300	E6	0.045	58.64	0.7779	21.20	,							
Est.	No.	Tiem-						E	M					
	datos	ро	1	%Red	2	%Red	3	%Red	4	%Red	5	%Red	6	%Red
	0	E0	-0.112	0.00	-0.114	0.00	-0.115	0.00	-0.117	0.00	-0.118	0.00	-0.120	0.00
	50	E1	-0.006	94.72	-0.005	95.32	-0.005	95.90	-0.004	96.47	-0.004	97.02	-0.003	97.56
	100	E2	-0.014	87.89	-0.013	88.13	-0.013	88.36	-0.013	88.59	-0.013	88.81	-0.013	89.03
h	150	E3	-0.015	86.87	-0.015	86.95	-0.015	87.04	-0.015	87.12	-0.015	87.20	-0.015	87.28
	200	E4	-0.016	85.41	-0.017	85.23	-0.017 85.05 -0.018 84.88				-0.018	84.71	-0.018	84.55
	250	E5	-0.019	83.35	-0.019	82.98	-0.020	82.63	-0.021	82.29	-0.021	81.96	-0.022	81.63
	300	E6	-0.019	82.89	-0.020	82.46	-0.021	82.07	-0.021	81.68	-0.022	81.29	-0.023	80.92
	0	E0	-0.841	0.00	-1.613	0.00	-1.852	0.00	-1.813	0.00	-1.666	0.00	-1.508	0.00
	50	E1	-0.140	83.38	-0.261	83.83	-0.153	91.73	0.067	96.29	0.316	81.01	0.543	64.00
	100	E2	-0.085	89.91	-0.156	90.31	-0.107	94.22	-0.041	97.71	0.014	99.14	0.052	96.56
с	150	E3	-0.037	95.64	-0.030	98.14	0.089	95.22	0.190	89.51	0.254	84.78	0.284	81.17
	200	E4	0.005	99.39	0.037	97.72	0.169	90.86	0.274	84.91	0.326	80.44	0.335	77.78
	250	E5	-0.036	95.73	-0.001	99.95	0.132	92.86	0.235	87.05	0.286	82.81	0.296	80.40
	300	E6	-0.043	94.84	-0.004	99.76	0.129	93.02	0.228	87.42	0.277	83.40	0.286	81.02
Fet	No.	Tiem-		•				E	СМ					
200	datos	ро	1	%Red	2	%Red	3	%Red	4	%Red	5	%Red	6	%Red
	0	E0	0.564	0.00	0.583	0.00	0.603	0.00	0.622	0.00	0.641	0.00	0.661	0.00
	50	E1	0.200	64.53	0.207	64.52	0.214	64.50	0.221	64.49	0.228	64.48	0.235	64.47
	100	E2	0.192	65.99	0.198	65.98	0.205	65.98	0.212	65.98	0.218	65.97	0.225	65.97
h	150	E3	0.199	64.66	0.206	64.65	0.213	64.65	0.220	64.64	0.227	64.64	0.234	64.64
	200	E4	0.200	64.58	0.207	64.55	0.214	64.52	0.221	64.50	0.228	64.47	0.235	64.45
	250	E5	0.201	64.38	0.208	64.34	0.215	64.31	0.222	64.28	0.229	64.25	0.236	64.22
	300	E6	0.202	64.13	0.209	64.09	0.217	64.06	0.224	64.03	0.231	64.00	0.238	63.97
	0	E0	7.072	0.00	9.450	0.00	8.968	0.00	7.778	0.00	6.653	0.00	5.829	0.00
	50	E1	1.893	73.23	3.755	60.27	4.131	53.94	3.931	49.46	3.603	45.85	3.317	43.09
	100	E2	1.411	80.05	2.256	76.12	2.241	75.01	1.995	74.35	1.776	73.31	1.646	71.76
с	150	E3	1.195	83.10	1.812	80.82	1.822	79.68	1.696	78.20	1.610	75.80	1.598	72.59
	200	E4	1.116	84.22	1.846	80.47	1.854	79.33	1.710	78.01	1.585	76.18	1.495	74.36
	250	E5	1.167	83.50	1.795	81.00	1.754	80.44	1.594	79.50	1.466	77.97	1.373	76.44
	300	E6	1.193	83.13	1.776	81.21	1.721	80.81	1.566	79.86	1.446	78.27	1.360	76.66

Cuadro B. 3 Cálculo del EM y del ECM de la estimación de Ln K, h y c (Caso 1.3)

Figura B. 3 Gráficas del EM y del ECM de la estimación de Ln K, h y c (Caso 1.3)

Eat	No.	Tiem-	E	м	EC	м								
ESI.	datos	ро	1	%Red	1	%Red	Caso 1	.4 Estim	ación con (Total 150	25 datos) datos de	de h y 25 h y 150 d	datos de atos de c	c en cada)	tiempo
	0	E0	0.076	0.0	0.7009	0.0					-			
	50	E1	0.083	-8.17	0.5950	15.11		EM- En	or medio			Covarian	79 SGSIM	
	100	E2	0.060	21.77	0.5715	18.46			or medio			Covariani		
Ln K	150	E3	0.047	38.58	0.5715	18.46	FCM	– Error ci	uadrático r	nedio	V	arianza d	≏ln K– ∩	5
	200	E4	0.034	55.72	0.5775	17.60	EOW			liculo				.0
	250	E5	0.024	68.52	0.5700	18.68	% Red	– Porcen	taie de rec	lucción	м	ledia de K	(ía
	300	E6	0.019	74.95	0.5503	21.49	701100						- 1.0 11/4	
Est.	No.	Tiem-			1			E	М					
	datos	ро	1	%Red	2	%Red	3	%Red	4	%Red	5	%Red	6	%Red
	0	E0	-0.094	0.00	-0.096	0.00	-0.097	0.00	-0.099	0.00	-0.100	0.00	-0.102	0.00
	50	E1	-0.007	92.15	-0.007	92.55	-0.007	92.94	-0.007	93.32	-0.006	93.68	-0.006	94.04
	100	E2	-0.014	85.49	-0.014	85.66	-0.014	85.83	-0.014	85.99	-0.014	86.15	-0.014	86.31
h	150	E3	-0.012	87.56	-0.012	87.67	-0.012	87.78	-0.012	87.89	-0.012	87.99	-0.012	88.10
	200	E4	-0.012	87.25	-0.012	87.12	-0.013	87.00	-0.013	86.87	-0.013	86.76	-0.014	86.65
	250	E5	-0.013	86.40	-0.013	86.18	-0.014	85.96	-0.014	85.76	-0.014	85.56	-0.015	85.36
	300	E6	-0.013	86.24	-0.013	85.96	-0.014	85.70	-0.014	85.43	-0.015	85.18	-0.015	84.92
	0	E0	-0.779	0.00	-1.312	0.00	-1.410	0.00	-1.323	0.00	-1.192	0.00	-1.085	0.00
	50	E1	-0.118	84.92	-0.134	89.80	-0.020	98.56	0.137	89.61	0.289	75.79	0.403	62.83
	100	E2	-0.093	88.03	-0.091	93.07	-0.029	97.91	0.027	97.98	0.065	94.54	0.079	92.68
с	150	E3	-0.042	94.60	0.006	99.55	0.092	93.51	0.143	89.21	0.160	86.56	0.150	86.17
	200	E4	-0.017	97.86	0.037	97.20	0.119	91.57	0.163	87.70	0.169	85.85	0.146	86.57
	250	E5	-0.026	96.67	0.027	97.94	0.107	92.44	0.149	88.76	0.155	87.01	0.133	87.70
	300	E6	-0.027	96.52	0.028	97.87	0.108	92.35	0.149	88.75	0.155	87.03	0.135	87.57
Fet	No.	Tiem-						E	СМ					-
L3t.	datos	ро	1	%Red	2	%Red	3	%Red	4	%Red	5	%Red	6	%Red
	0	E0	0.355	0.00	0.367	0.00	0.379	0.00	0.391	0.00	0.403	0.00	0.414	0.00
	50	E1	0.123	65.31	0.127	65.29	0.132	65.27	0.136	65.25	0.140	65.23	0.144	65.21
	100	E2	0.115	67.53	0.119	67.53	0.123	67.52	0.127	67.52	0.131	67.52	0.135	67.52
h	150	E3	0.119	66.41	0.123	66.40	0.127	66.38	0.131	66.37	0.135	66.36	0.139	66.35
	200	E4	0.122	65.64	0.126	65.59	0.130	65.55	0.135	65.51	0.139	65.47	0.143	65.44
	250	E5	0.124	65.02	0.128	64.97	0.133	64.92	0.137	64.87	0.142	64.83	0.146	64.79
	300	E6	0.124	65.00	0.129	64.94	0.133	64.89	0.137	64.84	0.142	64.79	0.146	64.75
	0	E0	5.674	0.00	6.872	0.00	6.210	0.00	5.255	0.00	4.485	0.00	4.003	0.00
	50	E1	1.459	74.29	2.290	66.68	2.355	62.08	2.241	57.36	2.108	52.98	2.003	49.98
	100	E2	0.989	82.56	1.280	81.37	1.148	81.51	1.044	80.13	1.020	77.26	1.047	73.85
с	150	E3	0.912	83.92	1.222	82.22	1.139	81.66	1.062	79.80	1.050	76.59	1.092	72.73
	200	E4	0.789	86.09	1.152	83.24	1.123	81.91	1.047	80.08	0.994	77.83	0.973	75.69
	250	E5	0.815	85.63	1.112	83.81	1.077	82.66	0.999	80.98	0.947	78.88	0.926	76.86
	300	E6	0.857	84.90	1.072	84.40	1.034	83.36	0.961	81.70	0.911	79.68	0.890	77.78

Cuadro B. 4 Cálculo del EM y del ECM de la estimación de Ln K, h y c (Caso 1.4)

Figura B. 4 Gráficas del EM y del ECM de la estimación de Ln K, h y c (Caso 1.4)

Eat	No.	Tiem-	E	м	EC	M								
ESI.	datos	ро	1	%Red	1	%Red	Caso 1	.4 Estima (ación con 2 Total 150	25 datos o datos de	de h y 25 (h y 150 d	datos de (atos de c)	c en cada)	tiempo
	0	E0	0.133	0.0	1.2143	0.0								
	50	E1	0.128	3.30	1.0544	13.16		EM- Erm	or medio			Covarian	72 SGSIM	
	100	E2	0.100	24.52	0.9738	19.80			or medio			Covarianz		
Ln K	150	E3	0.086	35.37	0.9738	19.80	FCM	- Error cu	adrático n	nedio	V	arianza di	oln K – 1	5
	200	E4	0.072	45.99	0.9688	20.21	LOW			ieulo	v			.5
	250	E5	0.063	52.23	0.9769	19.55	% Red	= Porcent	aie de red	ucción	м	edia de K	′= 1.6 m/d	ía
	300	E6	0.055	58.37	0.9637	20.63	70 1100		4,0 40 104	accion			- 1.0 11/4	
Est	No.	Tiem-			n			El	М		n		0	
200	datos	ро	1	%Red	2	%Red	3	%Red	4	%Red	5	%Red	6	%Red
	0	E0	-0.114	0.00	-0.116	0.00	-0.117	0.00	-0.118	0.00	-0.119	0.00	-0.120	0.00
	50	E1	-0.001	99.24	0.000	99.89	0.001	99.02	0.002	98.18	0.003	97.35	0.004	96.54
	100	E2	-0.011	90.82	-0.010	91.14	-0.010	91.45	-0.010	91.76	-0.009	92.06	-0.009	92.36
h	150	E3	-0.016	85.84	-0.016	85.85	-0.017	85.85	-0.017	85.87	-0.017	85.87	-0.017	85.88
	200	E4	-0.023	79.60	-0.024	79.24	-0.025	78.90	-0.025	78.55	-0.026	78.21	-0.027	77.89
	250	E5	-0.025	78.20	-0.026	77.66	-0.027	77.14	-0.028	76.62	-0.028	76.12	-0.029	75.62
	300	E6	-0.025	78.00	-0.026	77.42	-0.027	76.86	-0.028	76.30	-0.029	75.75	-0.030	75.22
	0	E0	-0.778	0.00	-1.702	0.00	-2.095	0.00	-2.146	0.00	-2.032	0.00	-1.865	0.00
	50	E1	-0.120	84.64	-0.345	79.74	-0.299	85.71	-0.072	96.63	0.228	88.79	0.531	71.55
	100	E2	-0.034	95.62	-0.188	88.95	-0.199	90.49	-0.150	93.03	-0.082	95.96	-0.015	99.18
с	150	E3	0.008	98.94	-0.055	96.77	0.036	98.29	0.151	92.95	0.242	88.09	0.303	83.78
	200	E4	0.027	96.53	-0.006	99.63	0.114	94.54	0.252	88.27	0.347	82.93	0.395	78.84
	250	E5	-0.015	98.07	-0.040	97.65	0.083	96.02	0.219	89.79	0.313	84.61	0.357	80.85
	300	E6	-0.029	96.24	-0.055	96.79	0.067	96.82	0.197	90.83	0.287	85.86	0.335	82.06
Ect	No.	Tiem-			•			EC	м		•	•		
ESI.	datos	ро	1	%Red	2	%Red	3	%Red	4	%Red	5	%Red	6	%Red
	0	E0	0.793	0.00	0.820	0.00	0.848	0.00	0.875	0.00	0.903	0.00	0.930	0.00
	50	E1	0.284	64.11	0.294	64.10	0.304	64.09	0.314	64.08	0.324	64.07	0.334	64.06
	100	E2	0.276	65.12	0.286	65.12	0.296	65.12	0.305	65.12	0.315	65.11	0.325	65.11
h	150	E3	0.286	63.90	0.296	63.90	0.306	63.90	0.316	63.90	0.326	63.90	0.336	63.90
	200	E4	0.280	64.65	0.290	64.63	0.300	64.61	0.310	64.60	0.320	64.58	0.330	64.57
	250	E5	0.274	65.39	0.284	65.37	0.294	65.35	0.303	65.33	0.313	65.31	0.323	65.29
	300	E6	0.276	65.20	0.286	65.18	0.295	65.16	0.305	65.14	0.315	65.12	0.325	65.10
	0	E0	7.755	0.00	11.100	0.00	11.119	0.00	9.995	0.00	8.710	0.00	7.633	0.00
	50	E1	2.086	73.09	4.748	57.23	5.670	49.01	5.593	44.04	5.174	40.60	4.728	38.05
	100	E2	1.671	78.45	3.096	72.11	3.479	68.71	3.276	67.22	2.918	66.49	2.597	65.98
с	150	E3	1.396	82.00	2.389	78.47	2.670	75.99	2.544	74.54	2.342	73.11	2.205	71.12
	200	E4	1.373	82.30	2.499	77.48	2.673	75.96	2.474	75.25	2.236	74.32	2.051	73.13
	250	E5	1.334	82.79	2.399	78.39	2.546	77.11	2.326	76.73	2.069	76.25	1.859	75.64
	300	E6	1.349	82.60	2.407	78.31	2.535	77.20	2.310	76.89	2.056	76.40	1.855	75.69

Cuadro B. 5 Cálculo del EM y del ECM de la estimación de Ln K, h y c (Caso 1.5)

Figura B. 5 Gráficas del EM y del ECM de la estimación de Ln K, h y c (Caso 1.5)

Eat	No.	Tiem-	E	EM	E	СМ								
ESt.	datos	ро	1	%Red	1	%Red	Caso	2.1 Estima	ación con	25 datos de	de h en c h)	ada tiempo	o (Total 1	50 datos
	0	E0	-0.240	0.0	0.9886	0.0								
	25	E1	-0.128	46.61	0.9253	6.41		EM- En	or medio			Covaria	nza I HS	
	50	E2	-0.121	49.81	0.9167	7.28		200-20				Covana		
Ln K	75	E3	-0.119	50.35	0.9167	7.28	ECN	1- Error ci	uadrático	medio	,	/arianza d	oln K− 1	1.0
	100	E4	-0.122	49.38	0.9118	7.78	201			medio		vananza a	C LITR	1.0
	125	E5	-0.125	48.01	0.9075	8.21	% Re	d= Porcen	taje de re	ducción	r	Media de K	(= 1.6 m/c	día
	150	E6	-0.128	46.71	0.9041	8.55			·					
Est.	No.	Tiem-		[1	[1	E	М	r		r		[
	datos	ро	1	%Red	2	%Red	3	%Red	4	%Red	5	%Red	6	%Red
	0	E0	-0.014	0.00	-0.015	0.00	-0.016	0.00	-0.017	0.00	-0.018	0.00	-0.019	0.00
	25	E1	0.064	-351.70	0.065	-328.96	0.066	-309.20	0.068	-291.54	0.069	-276.11	0.070	-262.20
	50	E2	0.061	-332.29	0.063	-314.18	0.065	-298.40	0.066	-284.29	0.068	-272.01	0.070	-260.86
h	75	E3	0.059	-320.75	0.061	-304.68	0.063	-290.68	0.065	-278.20	0.067	-267.30	0.069	-257.39
	100	E4	0.059	-317.07	0.061	-301.72	0.063	-288.27	0.065	-276.29	0.067	-265.83	0.069	-256.36
	125	E5	0.059	-317.85	0.061	-302.64	0.063	-289.38	0.065	-277.51	0.067	-267.25	0.069	-257.86
	150	E6	0.059	-320.68	0.061	-305.47	0.064	-292.22	0.066	-280.35	0.068	-270.04	0.070	-260.70
	0	E0	1.662	0.00	2.060	0.00	1.701	0.00	1.205	0.00	0.782	0.00	0.463	0.00
	25	E1	1.404	15.56	1.634	20.69	1.206	29.10	0.720	40.30	0.360	53.94	0.140	69.71
	50	E2	0.949	42.92	0.897	56.48	0.380	77.63	-0.116	90.36	-0.468	40.18	-0.683	-47.55
с	75	E3	0.723	56.54	0.532	74.16	-0.020	98.82	-0.513	57.42	-0.853	-9.05	-1.059	-128.68
	100	E4	0.611	63.24	0.359	82.56	-0.201	88.16	-0.684	43.28	-1.010	-29.14	-1.205	-160.26
	125	E5	0.536	67.75	0.248	87.96	-0.312	81.65	-0.783	35.02	-1.097	-40.38	-1.284	-177.27
	150	E6	0.482	71.04	0.170	91.76	-0.388	77.17	-0.850	29.44	-1.157	-47.95	-1.337	-188.75
Fet	No.	Tiem-						EC	СМ					
∟3ι.	datos	ро	1	%Red	2	%Red	3	%Red	4	%Red	5	%Red	6	%Red
	0	E0	0.525	0.00	0.543	0.00	0.562	0.00	0.581	0.00	0.600	0.00	0.619	0.00
	25	E1	0.305	41.80	0.316	41.91	0.326	42.02	0.336	42.11	0.347	42.20	0.357	42.29
	50	E2	0.300	42.81	0.310	42.90	0.321	42.98	0.331	43.05	0.341	43.12	0.352	43.18
h	75	E3	0.298	43.22	0.308	43.29	0.319	43.35	0.329	43.41	0.339	43.47	0.350	43.52
	100	E4	0.297	43.37	0.307	43.44	0.318	43.49	0.328	43.55	0.338	43.60	0.349	43.65
	125	E5	0.297	43.47	0.307	43.53	0.317	43.58	0.328	43.64	0.338	43.69	0.348	43.73
	150	E6	0.296	43.59	0.306	43.65	0.317	43.70	0.327	43.75	0.337	43.80	0.348	43.85
	0	E0	7.249	0.00	8.946	0.00	8.679	0.00	8.122	0.00	7.764	0.00	7.644	0.00
	25	E1	6.475	10.67	7.875	11.97	7.274	16.19	6.384	21.39	5.747	25.98	5.413	29.18
	50	E2	5.842	19.40	7.027	21.45	6.493	25.18	5.755	29.14	5.244	32.46	4.982	34.82
с	75	E3	5.254	27.52	6.234	30.32	5.732	33.95	5.100	37.21	4.679	39.73	4.467	41.56
	100	E4	4.813	33.61	5.641	36.95	5.162	40.52	4.610	43.24	4.262	45.11	4.092	46.46
	125	E5	4.499	37.93	5.220	41.65	4.764	45.10	4.279	47.32	3.990	48.61	3.858	49.53
	150	E6	4.287	40.86	4.931	44.88	4.492	48.25	4.058	50.04	3.815	50.86	3.713	51.43

Cuadro B. 6 Cálculo del EM y del ECM de la estimación de Ln K, h y c (Caso 2.1)

Figura B. 6 Gráficas del EM y del ECM de la estimación de Ln K, h y c (Caso 2.1)

Eat	No.	Tiem-	E	M	E	СМ								
ESI.	datos	ро	1	%Red	1	%Red	Caso	2.2 Estima	ación con	25 datos de	de c en ca c)	ada tiempo) (Total 1	50 datos
	0	E0	-0.240	0.0	0.9886	0.0								
	25	E1	-0.236	1.99	0.9964	-0.78		EM= Err	or medio			Covaria	nza I HS	
	50	E2	-0.217	9.53	0.9477	4.14		200-20				oovana		
Ln K	75	E3	-0.212	11.72	0.9477	4.14	FCA	1- Error ci	adrátim	medio	,	/arianza de	⊃ln K–1	0
	100	E4	-0.221	8.15	0.9316	5.77	LON			medio	,			
	125	E5	-0.210	12.44	0.9181	7.14	% Re	d= Porcen	taje de re	ducción	N	/ledia de K	= 1.6 m/o	día
	150	E6	-0.207	13.84	0.9122	7.73								
Est.	No.	Tiem-		[[E	М	r	1	[[
	datos	ро	1	%Red	2	%Red	3	%Red	4	%Red	5	%Red	6	%Red
	0	E0	-0.014	0.00	-0.015	0.00	-0.016	0.00	-0.017	0.00	-0.018	0.00	-0.019	0.00
	25	E1	-0.090	-539.66	-0.093	-514.71	-0.096	-492.96	-0.099	-473.57	-0.102	-456.64	-0.105	-441.31
	50	E2	-0.082	-480.88	-0.085	-458.25	-0.087	-438.52	-0.090	-420.87	-0.092	-405.58	-0.095	-391.62
h	75	E3	-0.022	-56.37	-0.023	-53.36	-0.024	-50.80	-0.026	-48.41	-0.027	-46.42	-0.028	-44.57
	100	E4	-0.069	-390.86	-0.072	-375.33	-0.075	-361.79	-0.078	-349.62	-0.080	-339.09	-0.083	-329.52
	125	E5	0.013	6.52	0.014	9.96	0.014	13.02	0.015	15.71	0.015	18.10	0.015	20.27
	150	E6	0.018	-27.55	0.019	-22.43	0.019	-18.02	0.020	-14.09	0.020	-10.61	0.021	-7.50
	0	E0	1.662	0.00	2.060	0.00	1.701	0.00	1.205	0.00	0.782	0.00	0.463	0.00
	25	E1	0.133	92.03	0.093	95.48	0.068	96.01	0.073	93.95	0.095	87.85	0.120	74.02
	50	E2	0.200	87.95	0.231	88.80	0.201	88.17	0.138	88.53	0.064	91.78	-0.009	98.06
с	75	E3	0.151	90.90	0.167	91.89	0.193	88.64	0.239	80.15	0.303	61.28	0.377	18.67
	100	E4	0.180	89.14	0.224	89.14	0.258	84.84	0.291	75.82	0.334	57.22	0.389	15.94
	125	E5	0.213	87.19	0.237	88.51	0.251	85.22	0.262	78.27	0.272	65.26	0.281	39.37
	150	E6	0.196	88.23	0.205	90.03	0.213	87.46	0.221	81.70	0.231	70.51	0.243	47.47
Fst	No.	Tiem-						EC	CM		-			
230.	datos	ро	1	%Red	2	%Red	3	%Red	4	%Red	5	%Red	6	%Red
	0	E0	0.525	0.00	0.543	0.00	0.562	0.00	0.581	0.00	0.600	0.00	0.619	0.00
	25	E1	0.537	-2.39	0.556	-2.32	0.575	-2.24	0.594	-2.18	0.613	-2.11	0.632	-2.05
	50	E2	0.498	4.99	0.516	5.05	0.534	5.09	0.551	5.14	0.569	5.18	0.587	5.22
h	75	E3	0.440	16.11	0.456	16.16	0.471	16.21	0.487	16.25	0.502	16.29	0.518	16.33
	100	E4	0.455	13.22	0.471	13.27	0.487	13.31	0.504	13.36	0.520	13.40	0.536	13.44
	125	E5	0.409	22.01	0.423	22.08	0.438	22.14	0.452	22.20	0.466	22.26	0.481	22.32
	150	E6	0.397	24.30	0.411	24.37	0.425	24.44	0.439	24.50	0.453	24.56	0.467	24.62
	0	E0	7.249	0.00	8.946	0.00	8.679	0.00	8.122	0.00	7.764	0.00	7.644	0.00
	25	E1	1.804	75.12	2.631	70.59	2.753	68.28	2.688	66.91	2.613	66.35	2.584	66.19
	50	E2	1.458	79.89	1.690	81.11	1.477	82.99	1.415	82.58	1.501	80.67	1.615	78.87
с	75	E3	1.349	81.39	1.556	82.61	1.401	83.86	1.273	84.32	1.208	84.44	1.198	84.33
	100	E4	1.360	81.25	1.672	81.31	1.603	81.53	1.536	81.08	1.514	80.49	1.535	79.92
	125	E5	1.433	80.24	1.705	80.94	1.579	81.80	1.454	82.10	1.364	82.43	1.304	82.94
	150	E6	1.429	80.28	1.707	80.92	1.584	81.75	1.456	82.07	1.363	82.45	1.302	82.96

Cuadro B. 7 Cálculo del EM y del ECM de la estimación de Ln K, h y c (Caso 2.2)

Figura B. 7 Gráficas del EM y del ECM de la estimación de Ln K, h y c (Caso 2.2)

Eat	No.	Tiem-	E	EM	E	СМ								
ESt.	datos	ро	1	%Red	1	%Red	Caso	2.3 Estima	ación cor (Total 15	0 25 datos 0 datos de	de h y 25 h y 150	datos de d datos de c	c en cada)	a tiempo
	0	E0	-0.240	0.0	0.9886	0.0								
	50	E1	-0.079	67.32	0.9129	7.66		FM= Frr	or medio			Covaria	nza I HS	
	100	E2	-0.063	73.94	0.8749	11.51		200-20				oovana		
Ln K	150	E3	-0.080	66.86	0.8749	11.51	ECA	1- Error ci	uadrático	medio	,	/arianza d	≏ln K– ′	1.0
	200	E4	-0.086	64.37	0.8518	13.84	201			medio		vananza a	C LITR	1.0
	250	E5	-0.120	49.92	0.8486	14.16	% Re	d= Porcent	taie de re	ducción	r.	/ledia de K	= 1.6 m/	día
	300	E6	-0.131	45.42	0.8453	14.50								
Est.	No.	Tiem-		[1	[1	E	М	r	1	r	1	r
	datos	ро	1	%Red	2	%Red	3	%Red	4	%Red	5	%Red	6	%Red
	0	E0	-0.014	0.00	-0.015	0.00	-0.016	0.00	-0.017	0.00	-0.018	0.00	-0.019	0.00
	50	E1	0.064	-356.02	0.067	-340.11	0.069	-326.17	0.071	-313.74	0.074	-302.95	0.076	-293.12
	100	E2	0.065	-362.32	0.068	-345.58	0.070	-330.99	0.072	-317.91	0.074	-306.62	0.077	-296.28
h	150	E3	0.063	-342.71	0.065	-325.92	0.067	-311.36	0.069	-298.26	0.071	-286.93	0.073	-276.58
	200	E4	0.055	-286.40	0.056	-272.43	0.058	-260.31	0.060	-249.45	0.062	-239.97	0.064	-231.39
	250	E5	0.055	-286.19	0.057	-272.69	0.058	-260.93	0.060	-250.43	0.062	-241.28	0.064	-232.99
	300	E6	0.051	-264.52	0.053	-251.58	0.055	-240.31	0.057	-230.20	0.059	-221.43	0.061	-213.50
	0	E0	1.662	0.00	2.060	0.00	1.701	0.00	1.205	0.00	0.782	0.00	0.463	0.00
	50	E1	0.023	98.64	-0.126	93.89	-0.287	83.12	-0.399	66.91	-0.449	42.55	-0.449	2.94
	100	E2	0.096	94.21	0.056	97.30	-0.006	99.63	-0.060	95.02	-0.090	88.52	-0.093	80.01
с	150	E3	0.061	96.35	0.029	98.60	0.030	98.24	0.066	94.49	0.131	83.23	0.214	53.77
	200	E4	0.089	94.65	0.087	95.77	0.099	94.19	0.123	89.79	0.164	79.02	0.221	52.32
	250	E5	0.130	92.20	0.114	94.45	0.107	93.74	0.105	91.32	0.108	86.13	0.116	74.86
	300	E6	0.118	92.93	0.091	95.59	0.077	95.47	0.072	94.04	0.075	90.43	0.084	81.77
Ect	No.	Tiem-						EC	CM		I			
∟3ι.	datos	ро	1	%Red	2	%Red	3	%Red	4	%Red	5	%Red	6	%Red
	0	E0	0.525	0.00	0.543	0.00	0.562	0.00	0.581	0.00	0.600	0.00	0.619	0.00
	50	E1	0.303	42.20	0.314	42.26	0.324	42.32	0.335	42.37	0.345	42.43	0.356	42.47
	100	E2	0.284	45.90	0.294	45.96	0.303	46.02	0.313	46.08	0.323	46.14	0.333	46.19
h	150	E3	0.279	46.82	0.289	46.88	0.298	46.94	0.308	47.00	0.318	47.05	0.327	47.10
	200	E4	0.270	48.48	0.280	48.53	0.289	48.59	0.299	48.63	0.308	48.68	0.317	48.72
	250	E5	0.266	49.28	0.275	49.33	0.285	49.38	0.294	49.42	0.303	49.47	0.313	49.50
	300	E6	0.260	50.35	0.270	50.40	0.279	50.45	0.288	50.49	0.297	50.53	0.306	50.57
	0	E0	7.249	0.00	8.946	0.00	8.679	0.00	8.122	0.00	7.764	0.00	7.644	0.00
	50	E1	1.603	77.89	2.103	76.49	2.068	76.18	2.071	74.50	2.116	72.74	2.160	71.74
	100	E2	1.201	83.43	1.310	85.35	1.076	87.60	1.134	86.04	1.334	82.82	1.503	80.33
с	150	E3	1.154	84.08	1.275	85.75	1.063	87.75	0.912	88.77	0.856	88.98	0.875	88.56
	200	E4	1.174	83.80	1.359	84.81	1.215	86.01	1.118	86.23	1.090	85.96	1.114	85.42
	250	E5	1.232	83.01	1.429	84.03	1.253	85.57	1.109	86.35	1.022	86.84	0.976	87.23
	300	E6	1.224	83.12	1.414	84.19	1.239	85.72	1.096	86.51	1.006	87.04	0.958	87.47

Cuadro B. 8 Cálculo del EM y del ECM de la estimación de Ln K, h y c (Caso 2.3)

Figura B. 8 Gráficas del EM y del ECM de la estimación de Ln K, h y c (Caso 2.3)

Eat	No.	Tiem-	E	EM	E	СМ								
ESI.	datos	ро	1	%Red	1	%Red	Caso	2.4 Estima	ación cor (Total 15	n 25 datos 0 datos de	de h y 25 h y 150	datos de d datos de c	c en cada)	a tiempo
	0	E0	-0.170	0.0	0.6991	0.0					-			
	50	E1	-0.054	68.47	0.6382	8.71		EM- Err	or medio			Covaria	9H I 670	
	100	E2	-0.033	80.75	0.6186	11.51						Covaria		
Ln K	150	E3	-0.044	74.36	0.6186	11.51	FCN		adrático	medio	,	/arianza d	oln K-(15
	200	E4	-0.049	71.07	0.5970	14.59	LON		aulatico	medio		vananza u		5.5
	250	E5	-0.063	63.20	0.5951	14.87	% Re	d= Porcent	taie de re	ducción	r.	/ledia de K	= 1.6 m/o	día
	300	E6	-0.073	57.30	0.5911	15.45								
Est.	No.	Tiem-				1	1	E	М	1	1	1	1	1
	datos	ро	1	%Red	2	%Red	3	%Red	4	%Red	5	%Red	6	%Red
	0	E0	-0.005	0.00	-0.005	0.00	-0.006	0.00	-0.006	0.00	-0.007	0.00	-0.007	0.00
	50	E1	0.034	-612.82	0.035	-563.21	0.036	-524.01	0.038	-490.27	0.039	-462.61	0.040	-438.31
	100	E2	0.034	-615.34	0.035	-563.58	0.036	-522.47	0.037	-487.28	0.039	-458.41	0.040	-432.93
h	150	E3	0.034	-613.45	0.035	-560.94	0.036	-519.04	0.037	-483.36	0.038	-454.06	0.039	-428.23
	200	E4	0.031	-561.13	0.033	-514.91	0.034	-478.22	0.035	-446.78	0.036	-420.87	0.037	-398.12
	250	E5	0.032	-568.28	0.033	-522.08	0.034	-485.25	0.035	-453.85	0.036	-427.97	0.038	-405.24
	300	E6	0.030	-527.73	0.031	-483.96	0.032	-449.40	0.033	-419.62	0.034	-395.22	0.035	-373.66
	0	E0	1.142	0.00	1.406	0.00	1.105	0.00	0.699	0.00	0.348	0.00	0.077	0.00
	50	E1	-0.025	97.79	-0.127	90.99	-0.232	79.02	-0.313	55.20	-0.361	-3.68	-0.379	-389.04
	100	E2	0.040	96.49	0.014	99.00	-0.031	97.18	-0.075	89.23	-0.102	70.81	-0.106	-36.19
с	150	E3	0.016	98.63	0.006	99.58	0.017	98.49	0.047	93.27	0.096	72.46	0.158	-103.86
	200	E4	0.048	95.82	0.046	96.74	0.051	95.43	0.060	91.47	0.077	77.85	0.103	-33.59
	250	E5	0.055	95.16	0.040	97.15	0.036	96.76	0.034	95.10	0.036	89.62	0.042	45.64
	300	E6	0.042	96.32	0.018	98.72	0.010	99.07	0.007	98.98	0.008	97.74	0.013	83.68
Ect	No.	Tiem-				•		EC	см.	•		•		•
L3I.	datos	ро	1	%Red	2	%Red	3	%Red	4	%Red	5	%Red	6	%Red
	0	E0	0.310	0.00	0.321	0.00	0.332	0.00	0.343	0.00	0.354	0.00	0.365	0.00
	50	E1	0.173	44.13	0.179	44.20	0.185	44.25	0.191	44.31	0.197	44.36	0.203	44.41
	100	E2	0.162	47.72	0.167	47.79	0.173	47.86	0.179	47.92	0.184	47.98	0.190	48.03
h	150	E3	0.158	49.00	0.163	49.07	0.169	49.12	0.174	49.18	0.180	49.23	0.185	49.28
	200	E4	0.155	50.03	0.160	50.07	0.166	50.12	0.171	50.15	0.176	50.19	0.182	50.23
	250	E5	0.151	51.18	0.156	51.22	0.162	51.26	0.167	51.30	0.172	51.34	0.178	51.37
	300	E6	0.149	52.04	0.154	52.09	0.159	52.13	0.164	52.17	0.169	52.20	0.174	52.24
	0	E0	5.376	0.00	6.644	0.00	6.398	0.00	5.941	0.00	5.660	0.00	5.579	0.00
	50	E1	1.113	79.29	1.375	79.30	1.245	80.55	1.213	79.59	1.257	77.79	1.308	76.55
	100	E2	0.743	86.19	0.797	88.00	0.631	90.14	0.725	87.80	0.918	83.77	1.069	80.83
с	150	E3	0.758	85.90	0.797	88.00	0.663	89.64	0.587	90.12	0.580	89.75	0.624	88.82
	200	E4	0.726	86.49	0.799	87.97	0.726	88.66	0.691	88.38	0.693	87.75	0.724	87.02
	250	E5	0.709	86.80	0.801	87.94	0.721	88.73	0.658	88.92	0.620	89.05	0.597	89.29
	300	E6	0.710	86.80	0.801	87.95	0.718	88.78	0.653	89.01	0.611	89.21	0.584	89.53

Cuadro B. 9 Cálculo del EM y del ECM de la estimación de Ln K, h y c (Caso 2.4)

Figura B. 9 Gráficas del EM y del ECM de la estimación de Ln K, h y c (Caso 2.4)

Est.	No. datos	Tiem- po	EM		ECM										
			1	%Red	1	%Red	Caso 2.4 Estimación con 25 datos de h y 25 datos de c en cada tiempo (Total 150 datos de h y 150 datos de c)								
Ln K	0	E0	-0.294	0.0	1.2108	0.0									
	50	E1	-0.100	66.01	1.1208	7.43	EM- Error media								
	100	E2	-0.091	69.10	1.0893	10.04									
	150	E3	-0.105	64.24	1.0893	10.04	ECM= Error cuadrático medio Varianza de Ln K- 1.5							15	
	200	E4	-0.113	61.78	1.0698	11.65									
	250	E5	-0.167	43.27	1.0684	11.76	% Red= Porcentaje de reducción					Media de K= 1.6 m/día			
	300	E6	-0.177 39.87 1.0657 11.98												
Est.	No. datos	Tiem- po													
			1	%Red	2	%Red	3	%Red	4	%Red	5	%Red	6	%Red	
h	0	E0	-0.034	0.00	-0.036	0.00	-0.037	0.00	-0.039	0.00	-0.041	0.00	-0.043	0.00	
	50	E1	0.102	-201.34	0.105	-195.67	0.109	-190.63	0.113	-186.02	0.116	-181.91	0.120	-178.11	
	100	E2	0.103	-206.06	0.107	-200.20	0.111	-195.01	0.114	-190.24	0.118	-185.98	0.122	-182.05	
	150	E3	0.098	-190.20	0.101	-184.15	0.104	-178.75	0.108	-173.82	0.111	-169.42	0.114	-165.33	
	200	E4	0.083	-146.13	0.086	-141.15	0.089	-136.76	0.092	-132.73	0.094	-129.13	0.097	-125.79	
	250	E5	0.078	-131.05	0.081	-126.64	0.083	-122.74	0.086	-119.14	0.089	-115.96	0.092	-112.99	
	300	E6	0.074	-120.78	0.077	-116.47	0.080	-112.65	0.082	-109.15	0.085	-106.04	0.088	-103.13	
c	0	E0	2.052	0.00	2.563	0.00	2.189	0.00	1.656	0.00	1.204	0.00	0.871	0.00	
	50	E1	0.079	96.14	-0.111	95.67	-0.330	84.93	-0.475	71.35	-0.529	56.09	-0.513	41.08	
	100	E2	0.157	92.33	0.098	96.16	0.010	99.56	-0.061	96.33	-0.098	91.84	-0.105	87.96	
	150	E3	0.122	94.06	0.075	97.08	0.058	97.34	0.090	94.54	0.162	86.52	0.259	70.32	
	200	E4	0.140	93.16	0.140	94.53	0.146	93.32	0.172	89.59	0.226	81.28	0.302	65.31	
	250	E5	0.197	90.39	0.191	92.55	0.176	91.97	0.170	89.73	0.177	85.29	0.192	77.94	
	300	E6	0.187	90.87	0.170	93.35	0.148	93.22	0.139	91.64	0.144	88.01	0.162	81.41	
Est.	No. datos	Tiem- po	ЕСМ												
			1	%Red	2	%Red	3	%Red	4	%Red	5	%Red	6	%Red	
h	0	E0	0.763	0.00	0.791	0.00	0.818	0.00	0.846	0.00	0.873	0.00	0.901	0.00	
	50	E1	0.449	41.11	0.465	41.16	0.481	41.22	0.497	41.27	0.512	41.31	0.528	41.35	
	100	E2	0.421	44.84	0.436	44.90	0.450	44.95	0.465	45.00	0.480	45.05	0.495	45.09	
	150	E3	0.408	46.49	0.423	46.55	0.437	46.61	0.451	46.66	0.465	46.71	0.480	46.75	
	200	E4	0.397	47.91	0.411	47.96	0.425	48.01	0.439	48.06	0.453	48.10	0.467	48.15	
	250	E5	0.386	49.44	0.399	49.49	0.413	49.54	0.426	49.58	0.440	49.62	0.453	49.66	
	300	E6	0.377	50.64	0.390	50.68	0.403	50.73	0.416	50.77	0.430	50.81	0.443	50.85	
c	0	E0	8.527	0.00	10.544	0.00	10.330	0.00	9.768	0.00	9.397	0.00	9.273	0.00	
	50	E1	1.940	77.24	2.653	74.83	2.765	73.23	2.843	70.89	2.912	69.01	2.960	68.08	
	100	E2	1.513	82.25	1.657	84.29	1.433	86.13	1.512	84.52	1.724	81.65	1.901	79.50	
	150	E3	1.435	83.17	1.623	84.61	1.429	86.17	1.306	86.62	1.268	86.51	1.295	86.03	
	200	E4	1.511	82.28	1.762	83.28	1.590	84.61	1.462	85.03	1.409	85.00	1.422	84.66	
	250	E5	1.587	81.39	1.808	82.85	1.592	84.59	1.411	85.55	1.295	86.21	1.235	86.68	
	300	E6	1.591	81.34	1.791	83.01	1.566	84.84	1.381	85.86	1.262	86.57	1.200	87.06	

Cuadro B. 10 Cálculo del EM y del ECM de la estimación de Ln K, h y c (Caso 2.5)

Figura B. 10 Gráficas del EM y del ECM de la estimación de Ln K, h y c (Caso 2.5)

Eat	No.	Tiem-		EM	i	ECM								
ESI.	datos	ро	1	%Red	1	%Red	Caso	5.3 Estimac	ión con 2	25 datos de o	en cad	a tiempo (To	tal 150 d	latos de c)
	0	E0	-0.242	0.0	0.9903	0.0								
	25	E1	-0.238	1.37	1.0001	-1.00		EM- Err	or modic	`		Covarianz	za SGSir	n
	50	E2	-0.244	-1.16	0.9860	0.44)		Realizad	ión LHS	
Ln K	75	E3	-0.227	6.18	0.9860	0.44	FC	CM= Error ci	uadrático	medio		Varianza de	≏ln K=	10
	100	E4	-0.212	12.17	0.9708	1.97				moulo		vananza a	5 En Re	1.0
	125	E5	-0.188	21.99	0.9845	0.59	% R	ed= Porcent	aie de re	educción		Media de K	= 1.6 m/	día
	150	E6	-0.190	21.34	0.9875	0.28	/011							
Est.	No.	Tiem-						E	М					
-	datos	ро	1	%Red	2	%Red	3	%Red	4	%Red	5	%Red	6	%Red
	0	E0	0.006	0.00	0.006	0.00	0.006	0.00	0.005	0.00	0.005	0.00	0.005	0.00
	25	E1	-0.100	-1,464.84	-0.103	-1,592.95	-0.106	-1,734.48	-0.110	-1,895.08	-0.113	-2,070.91	-0.116	-2,268.10
	50	E2	-0.118	-1,741.41	-0.122	-1,892.95	-0.125	-2,060.00	-0.129	-2,249.73	-0.133	-2,457.42	-0.136	-2,690.39
h	75	E3	-0.059	-827.81	-0.062	-911.97	-0.064	-1,004.83	-0.066	-1,110.02	-0.069	-1,225.24	-0.071	-1,354.81
	100	E4	0.001	89.38	0.001	91.64	0.000	94.31	0.000	97.27	0.000	99.61	0.000	95.91
	125	E5	0.078	-1,116.09	0.081	-1,225.41	0.084	-1,346.21	0.087	-1,482.88	0.090	-1,632.76	0.093	-1,800.82
	150	E6	0.094	-1,373.13	0.098	-1,503.77	0.101	-1,647.93	0.105	-1,811.29	0.108	-1,990.37	0.112	-2,191.21
	0	E0	1.659	0.00	2.085	0.00	1.750	0.00	1.267	0.00	0.849	0.00	0.532	0.00
	25	E1	0.151	90.92	0.104	94.99	0.027	98.46	-0.020	98.43	-0.033	96.14	-0.025	95.24
	50	E2	0.173	89.57	0.190	90.90	0.154	91.18	0.101	92.01	0.046	94.63	-0.007	98.62
с	75	E3	0.149	91.03	0.173	91.69	0.191	89.08	0.223	82.43	0.272	67.99	0.334	37.18
	100	E4	0.180	89.15	0.225	89.19	0.246	85.96	0.267	78.96	0.303	64.35	0.355	33.23
	125	E5	0.219	86.82	0.271	87.00	0.293	83.23	0.302	76.20	0.305	64.07	0.306	42.59
	150	E6	0.205	87.67	0.248	88.09	0.268	84.71	0.277	78.14	0.286	66.27	0.298	44.06
Ect	No.	Tiem-						E	СМ					
E5I.	datos	ро	1	%Red	2	%Red	3	%Red	4	%Red	5	%Red	6	%Red
	0	E0	0.515	0.00	0.534	0.00	0.552	0.00	0.571	0.00	0.589	0.00	0.608	0.00
	25	E1	0.542	-5.13	0.561	-5.06	0.580	-5.00	0.599	-4.95	0.618	-4.89	0.637	-4.84
	50	E2	0.530	-2.83	0.548	-2.77	0.567	-2.72	0.586	-2.66	0.605	-2.62	0.623	-2.57
h	75	E3	0.472	8.32	0.489	8.33	0.506	8.35	0.523	8.36	0.540	8.37	0.557	8.39
	100	E4	0.449	12.93	0.464	12.97	0.480	13.02	0.496	13.06	0.512	13.10	0.528	13.14
	125	E5	0.444	13.86	0.459	13.90	0.475	13.95	0.491	13.99	0.506	14.02	0.522	14.06
	150	E6	0.443	13.94	0.459	13.99	0.475	14.05	0.490	14.09	0.506	14.14	0.521	14.18
	0	E0	7.344	0.00	9.070	0.00	8.806	0.00	8.233	0.00	7.852	0.00	7.710	0.00
	25	E1	1.789	75.64	2.657	70.70	2.858	67.55	2.846	65.43	2.807	64.26	2.803	63.65
	50	E2	1.460	80.12	1.623	82.10	1.547	82.43	1.617	80.36	1.768	77.48	1.908	75.26
с	75	E3	1.473	79.95	1.718	81.06	1.617	81.63	1.512	81.63	1.465	81.35	1.468	80.96
	100	E4	1.513	79.40	1.777	80.40	1.707	80.61	1.640	80.09	1.627	79.29	1.665	78.41
	125	E5	1.629	77.81	1.887	79.20	1.773	79.86	1.629	80.21	1.508	80.79	1.417	81.62
	150	E6	1.676	77.18	1.909	78.95	1.767	79.93	1.607	80.48	1.479	81.16	1.387	82.01

Cuadro B. 11 Cálculo del EM y del ECM de la estimación de Ln K, h y c (Caso 5.3)

Figura B. 11 Gráficas del EM y del ECM de la estimación de Ln K, h y c (Caso 5.3)

Eat	No.	Tiem-	E	м	EC	M:								
ESt.	datos	ро	1	%Red	1	%Red	Case	5.4 Estim	nación con	25 de c er	n cada tien	npo (Total	150 datos	de c)
	0	E0	0.109	0.0	0.9862	0.0								
	25	E1	0.118	-8.31	0.9067	8.07		EM- Err	or medio			Covaria	nza LHS	
	50	E2	0.067	38.88	0.8066	18.21			or medio			Realizacio	ón SGSim	
Ln K	75	E3	0.100	8.31	0.8066	18.21	ECN	A- Error cu	adrático me	dio	``	/arianza de	oln K-1	n
	100	E4	0.105	3.98	0.8832	10.45	LCI			ulo		ananza u		0
	125	E5	0.084	23.30	0.8583	12.97	% Re	d= Porcent	aie de redu	rción	Ν	<i>l</i> edia de K	′= 1 6 m/dí	a
	150	E6	0.093	15.10	0.8602	12.77	70110	u rorocene					- 1.0 11/01	ä
Est.	No.	Tiem-						E	М					
Lot.	datos	ро	1	%Red	2	%Red	3	%Red	4	%Red	5	%Red	6	%Red
	0	E0	-0.133	0.00	-0.135	0.00	-0.137	0.00	-0.139	0.00	-0.142	0.00	-0.144	0.00
	25	E1	-0.217	-63.46	-0.222	-64.69	-0.227	-65.89	-0.233	-67.04	-0.238	-68.15	-0.243	-69.23
	50	E2	-0.175	-32.29	-0.179	-33.08	-0.183	-33.85	-0.188	-34.60	-0.192	-35.32	-0.196	-36.02
h	75	E3	-0.041	69.32	-0.041	69.85	-0.041	70.36	-0.041	70.85	-0.041	71.32	-0.041	71.79
	100	E4	-0.038	71.06	-0.039	71.23	-0.039	71.39	-0.040	71.55	-0.040	71.70	-0.040	71.85
	125	E5	-0.044	66.74	-0.045	66.60	-0.046	66.47	-0.047	66.34	-0.048	66.22	-0.049	66.10
	150	E6	-0.006	95.11	-0.006	95.43	-0.006	95.74	-0.006	96.04	-0.005	96.33	-0.005	96.62
	0	E0	-0.838	0.00	-1.638	0.00	-1.901	0.00	-1.874	0.00	-1.733	0.00	-1.577	0.00
	25	E1	-0.134	84.02	-0.307	81.27	-0.336	82.30	-0.304	83.78	-0.266	84.66	-0.258	83.62
	50	E2	-0.079	90.59	-0.191	88.36	-0.296	84.42	-0.455	75.74	-0.655	62.19	-0.885	43.88
с	75	E3	-0.056	93.33	-0.019	98.81	0.098	94.83	0.145	92.25	0.109	93.69	0.010	99.39
	100	E4	-0.090	89.27	-0.076	95.39	0.056	97.06	0.154	91.80	0.196	88.72	0.192	87.83
	125	E5	-0.092	88.99	-0.075	95.41	0.053	97.24	0.142	92.40	0.178	89.74	0.171	89.18
	150	E6	-0.096	88.54	-0.071	95.67	0.066	96.54	0.160	91.45	0.198	88.58	0.193	87.74
Ect	No.	Tiem-						E	СМ					
⊏5ι.	datos	ро	1	%Red	2	%Red	3	%Red	4	%Red	5	%Red	6	%Red
	0	E0	0.569	0.00	0.589	0.00	0.608	0.00	0.628	0.00	0.647	0.00	0.667	0.00
	25	E1	0.606	-6.46	0.627	-6.44	0.647	-6.41	0.668	-6.39	0.688	-6.36	0.709	-6.34
	50	E2	0.572	-0.51	0.592	-0.52	0.611	-0.53	0.631	-0.54	0.651	-0.55	0.670	-0.56
h	75	E3	0.376	33.94	0.389	33.88	0.402	33.84	0.416	33.79	0.429	33.75	0.442	33.71
	100	E4	0.357	37.31	0.369	37.27	0.382	37.23	0.394	37.19	0.407	37.16	0.419	37.12
	125	E5	0.395	30.58	0.409	30.50	0.423	30.41	0.437	30.34	0.451	30.27	0.465	30.20
	150	E6	0.410	28.02	0.424	27.91	0.439	27.82	0.454	27.73	0.468	27.64	0.483	27.56
	0	E0	7.185	0.00	9.597	0.00	9.115	0.00	7.911	0.00	6.764	0.00	5.913	0.00
	25	E1	1.894	73.64	3.921	59.14	4.426	51.44	4.316	45.44	4.059	39.99	3.851	34.88
	50	E2	1.286	82.10	2.099	78.13	2.239	75.43	2.213	72.03	2.268	66.47	2.456	58.47
с	75	E3	1.356	81.13	2.094	78.18	2.156	76.35	2.026	74.38	1.905	71.83	1.854	68.64
	100	E4	1.281	82.17	2.131	77.79	2.133	76.60	1.909	75.86	1.707	74.77	1.576	73.35
	125	E5	1.340	81.36	2.076	78.37	2.054	77.46	1.851	76.60	1.671	75.29	1.549	73.81
	150	E6	1.452	79.80	2.057	78.56	1.993	78.13	1.795	77.32	1.630	75.91	1.522	74.27

Cuadro B. 12 Cálculo del EM y del ECM de la estimación de Ln K, h y c (Caso 5.4)

Figura B. 12 Gráficas del EM y del ECM de la estimación de Ln K, h y c (Caso 5.4)

E et	No.	Tiem-	E	м	EC	м								
ESI.	datos	ро	1	%Red	1	%Red	Caso 3	BA. Estin	nación co Total 15)	n 25 datos 50 datos de	de h y 25 e h y 150	datos de datos de c	c en cada)	a tiempo
	0	E0	-1.590	0.0	1.8571	0.0					-			
	25	E1	1.307	17.84	2.0397	-9.83		EM- E	ror medic	`		Covaria	9H I 670	
	50	E2	1.410	11.37	1.9878	-7.04				,		Covana		
Ln K	75	E3	1.461	8.13	1.9878	-7.04	FCM	– Error c	uadrático	medio	\	/arianza d	oln K−1	0
	100	E4	1.487	6.49	1.9743	-6.31	2011		adalatioo	moulo				.0
	125	E5	1.437	9.62	1.9435	-4.65	% Red	= Porcer	ntaie de re	educción	N	/ledia de k	= 0.4 m/c	lía
	150	E6	1.433	9.88	1.9440	-4.68	,							
Est.	No.	Tiem-		r	1	r	-		EM	1			-	1
	datos	ро	1	%Red	2	%Red	3	%Red	4	%Red	5	%Red	6	%Red
	0	E0	-7.526	0.00	-7.798	0.00	-8.070	0.00	-8.342	0.00	-8.615	0.00	-8.888	0.00
	25	E1	0.164	97.82	0.170	97.83	0.175	97.84	0.180	97.85	0.185	97.86	0.189	97.87
	50	E2	0.167	97.78	0.173	97.79	0.178	97.80	0.182	97.81	0.187	97.83	0.192	97.84
h	75	E3	0.128	98.30	0.132	98.31	0.136	98.32	0.139	98.33	0.143	98.34	0.147	98.35
	100	E4	0.109	98.55	0.113	98.55	0.117	98.56	0.120	98.56	0.123	98.57	0.126	98.58
	125	E5	0.107	98.57	0.111	98.58	0.115	98.58	0.118	98.59	0.121	98.59	0.125	98.60
	150	E6	0.109	98.56	0.112	98.56	0.116	98.56	0.119	98.57	0.123	98.57	0.126	98.58
	0	E0	1.261	0.00	1.437	0.00	0.969	0.00	0.395	0.00	-0.103	0.00	-0.497	0.00
	25	E1	-0.085	93.29	-0.369	74.29	-0.686	29.22	-0.900	-128.10	-0.997	-866.46	-1.014	-104.12
	50	E2	-0.038	96.97	-0.166	88.44	-0.151	84.47	0.012	97.01	0.252	-144.33	0.510	-2.55
с	75	E3	-0.055	95.66	-0.167	88.37	-0.147	84.80	-0.014	96.44	0.186	-80.10	0.408	17.97
	100	E4	-0.049	96.13	-0.120	91.67	-0.111	88.56	-0.056	85.70	0.023	78.05	0.110	77.77
	125	E5	-0.077	93.89	-0.138	90.39	-0.131	86.51	-0.086	78.34	-0.026	74.73	0.028	94.37
	150	E6	-0.133	89.45	-0.208	85.50	-0.205	78.85	-0.158	60.00	-0.089	13.92	-0.019	96.20
Ect	No.	Tiem-						E	СМ	•				
ESI.	datos	ро	1	%Red	2	%Red	3	%Red	4	%Red	5	%Red	6	%Red
	0	E0	9.429	0.00	9.771	0.00	10.113	0.00	10.456	0.00	10.799	0.00	11.142	0.00
	25	E1	1.044	88.92	1.082	88.92	1.121	88.92	1.159	88.92	1.197	88.92	1.235	88.92
	50	E2	1.052	88.85	1.090	88.85	1.128	88.84	1.166	88.84	1.205	88.84	1.243	88.84
h	75	E3	1.087	88.47	1.126	88.47	1.166	88.47	1.205	88.47	1.245	88.47	1.284	88.47
	100	E4	1.126	88.06	1.167	88.06	1.208	88.06	1.249	88.06	1.290	88.06	1.331	88.06
	125	E5	1.151	87.79	1.193	87.79	1.235	87.79	1.276	87.79	1.318	87.80	1.360	87.80
	150	E6	1.181	87.47	1.224	87.47	1.267	87.48	1.309	87.48	1.352	87.48	1.394	87.48
	0	E0	6.777	0.00	8.494	0.00	8.362	0.00	7.944	0.00	7.694	0.00	7.648	0.00
	25	E1	1.928	71.54	2.966	65.08	3.593	57.03	4.212	46.98	4.854	36.91	5.466	28.53
	50	E2	1.647	75.70	2.172	74.43	2.474	70.41	3.172	60.08	4.017	47.79	4.800	37.23
с	75	E3	1.687	75.11	2.068	75.65	2.078	75.15	2.342	70.52	2.738	64.42	3.169	58.56
	100	E4	1.962	71.05	2.347	72.37	2.282	72.71	2.455	69.10	2.679	65.18	2.880	62.34
	125	E5	1.836	72.91	2.345	72.39	2.358	71.79	2.515	68.34	2.693	65.00	2.844	62.81
	150	E6	1.890	72.11	2.445	71.21	2.458	70.61	2.569	67.67	2.685	65.10	2.778	63.67

Cuadro B. 13 Cálculo del EM y del ECM de la estimación de Ln K, h y c (Caso 3A)

Figura B. 13 Gráficas del EM y del ECM de la estimación de Ln K, h y c (Caso 3A)

E-4	No.	Tiem-	E	м	EC	M								
ESI.	datos	ро	1	%Red	1	%Red	Caso 3	B. Estim	ación con (Total 15	25 datos 0 datos d	s de h y 2 e h y 150	5 datos de datos de o	c en cada ;)	a tiempo
	0	E0	-0.900	0.0	1.3154	0.0								
	25	E1	0.147	83.71	0.9931	24.50		EM- Err	or medio			Covaria	2H I 670	
	50	E2	0.190	78.89	0.9223	29.88						Covana		
Ln K	75	E3	0.194	78.47	0.9223	29.88	FCM:	= Error cu	adrático r	nedio	,	Varianza d	eln K=1	0
	100	E4	0.197	78.10	0.8812	33.01		2		liouio		rananza a		
	125	E5	0.158	82.44	0.8745	33.52	% Red	= Porcent	aie de rec	ducción		Media de K	= 0.8 m/c	día
	150	E6	0.147	83.71	0.8698	33.88			.,					
Est.	No.	Tiem-		1	1			E	M	1	1	r		
	datos	ро	1	%Red	2	%Red	3	%Red	4	%Red	5	%Red	6	%Red
	0	E0	-2.462	0.00	-2.551	0.00	-2.640	0.00	-2.729	0.00	-2.818	0.00	-2.907	0.00
	25	E1	0.097	96.05	0.101	96.04	0.104	96.05	0.108	96.05	0.111	96.05	0.115	96.05
	50	E2	0.098	96.00	0.102	96.01	0.105	96.02	0.108	96.03	0.112	96.03	0.115	96.04
h	75	E3	0.083	96.61	0.086	96.62	0.089	96.64	0.092	96.65	0.094	96.66	0.097	96.67
	100	E4	0.071	97.11	0.074	97.12	0.076	97.12	0.078	97.13	0.081	97.13	0.083	97.14
	125	E5	0.070	97.17	0.072	97.17	0.075	97.17	0.077	97.18	0.079	97.18	0.082	97.18
	150	E6	0.066	97.30	0.069	97.30	0.071	97.31	0.073	97.31	0.076	97.32	0.078	97.32
	0	E0	1.389	0.00	1.635	0.00	1.204	0.00	0.658	0.00	0.187	0.00	-0.179	0.00
	25	E1	-0.017	98.81	-0.218	86.67	-0.450	62.65	-0.620	5.77	-0.711	-279.85	-0.742	-313.33
	50	E2	0.045	96.77	-0.028	98.27	-0.069	94.26	-0.059	91.05	-0.009	95.37	0.065	63.94
с	75	E3	0.022	98.38	-0.038	97.67	-0.036	97.00	0.025	96.15	0.128	31.88	0.250	-39.47
	100	E4	0.045	96.75	0.017	98.93	0.023	98.08	0.053	91.89	0.106	43.25	0.177	1.35
	125	E5	0.067	95.15	0.032	98.05	0.024	98.03	0.032	95.12	0.051	72.53	0.076	57.54
	150	E6	0.044	96.84	-0.007	99.59	-0.022	98.19	-0.016	97.52	0.003	98.38	0.030	83.16
Fst	No.	Tiem-						E	СМ					
200	datos	ро	1	%Red	2	%Red	3	%Red	4	%Red	5	%Red	6	%Red
	0	E0	3.251	0.00	3.369	0.00	3.487	0.00	3.605	0.00	3.722	0.00	3.840	0.00
	25	E1	0.537	83.49	0.556	83.50	0.575	83.51	0.594	83.51	0.614	83.52	0.633	83.52
	50	E2	0.526	83.82	0.545	83.83	0.563	83.84	0.582	83.85	0.601	83.86	0.620	83.86
h	75	E3	0.534	83.58	0.553	83.59	0.572	83.60	0.591	83.60	0.610	83.61	0.629	83.62
	100	E4	0.541	83.36	0.560	83.37	0.580	83.38	0.599	83.39	0.618	83.39	0.637	83.40
	125	E5	0.541	83.37	0.560	83.38	0.579	83.39	0.599	83.39	0.618	83.40	0.637	83.41
	150	E6	0.543	83.30	0.562	83.31	0.582	83.32	0.601	83.33	0.620	83.33	0.640	83.34
	0	E0	6.925	0.00	8.627	0.00	8.448	0.00	7.983	0.00	7.692	0.00	7.617	0.00
	25	E1	1.577	77.23	2.003	76.78	2.010	76.21	2.175	72.76	2.401	68.78	2.603	65.83
	50	E2	1.149	83.40	1.281	85.15	1.128	86.64	1.360	82.96	1.731	77.50	2.046	73.13
с	75	E3	1.198	82.69	1.308	84.83	1.041	87.68	0.922	88.45	0.980	87.25	1.136	85.09
	100	E4	1.263	81.76	1.376	84.05	1.136	86.56	1.031	87.09	1.027	86.65	1.069	85.96
	125	E5	1.254	81.88	1.438	83.33	1.226	85.49	1.123	85.93	1.105	85.63	1.121	85.28
	150	E6	1.239	82.10	1.424	83.49	1.217	85.59	1.112	86.06	1.086	85.88	1.094	85.64

Cuadro B. 14 Cálculo del EM y del ECM de la estimación de Ln K, h y c (Caso 3B)

Figura B. 14 Gráficas del EM y del ECM de la estimación de Ln K, h y c (Caso 3B)

Eat	No.	Tiem-	E	м	EC	м								
ESt.	datos	ро	1	%Red	1	%Red	Caso 3	BC. Estima	ación con (Total 150	25 datos) datos de	de h y 25 e h y 150	datos de datos de	c en cad c)	a tiempo
	0	E0	-0.466	0.0	1.0664	0.0								
	25	E1	-0.066	85.78	0.9119	14.49		EM- Err	or medio			Covari	anza I HS	
	50	E2	-0.043	90.74	0.8662	18.77						Covan		
Ln K	75	E3	-0.055	88.25	0.8662	18.77	ECM	- Error cu	adrático r	medio	,	/arianza (he In K-	10
	100	E4	-0.058	87.47	0.8358	21.62	LOW			licalo	,	ananza		1.0
	125	E5	-0.094	79.79	0.8335	21.84	% Red	= Porcent	aie de rec	ducción	N	/ledia de	K= 1.2 m/	día
	150	E6	-0.106	77.31	0.8309	22.08								
Est.	No.	Tiem-						E	M					
	datos	ро	1	%Red	2	%Red	3	%Red	4	%Red	5	%Red	6	%Red
	0	E0	-0.677	0.00	-0.702	0.00	-0.727	0.00	-0.752	0.00	-0.777	0.00	-0.802	0.00
	25	E1	0.073	89.16	0.076	89.16	0.079	89.17	0.081	89.18	0.084	89.18	0.087	89.19
	50	E2	0.074	89.07	0.077	89.09	0.079	89.11	0.082	89.13	0.084	89.15	0.087	89.17
h	75	E3	0.068	89.99	0.070	90.02	0.072	90.06	0.075	90.09	0.077	90.12	0.079	90.15
	100	E4	0.059	91.33	0.061	91.35	0.063	91.37	0.065	91.39	0.067	91.40	0.069	91.42
	125	E5	0.058	91.41	0.060	91.42	0.062	91.43	0.064	91.44	0.066	91.45	0.069	91.45
	150	E6	0.055	91.90	0.057	91.91	0.059	91.93	0.061	91.94	0.063	91.95	0.064	91.96
	0	E0	1.547	0.00	1.880	0.00	1.491	0.00	0.974	0.00	0.531	0.00	0.192	0.00
	25	E1	0.011	99.28	-0.154	91.80	-0.340	77.17	-0.475	51.19	-0.544	-2.51	-0.559	-191.13
	50	E2	0.080	94.82	0.029	98.46	-0.029	98.05	-0.068	93.02	-0.080	85.00	-0.066	65.56
с	75	E3	0.050	96.78	0.009	99.52	0.008	99.45	0.048	95.08	0.118	77.77	0.206	-7.19
	100	E4	0.076	95.11	0.065	96.55	0.074	95.03	0.099	89.79	0.143	73.07	0.203	-5.43
	125	E5	0.111	92.85	0.087	95.36	0.079	94.73	0.080	91.83	0.088	83.42	0.101	47.24
	150	E6	0.095	93.84	0.059	96.84	0.044	97.03	0.042	95.69	0.050	90.65	0.065	66.42
Fst	No.	Tiem-		-	-	-		E	СМ	-	-	-		
200	datos	ро	1	%Red	2	%Red	3	%Red	4	%Red	5	%Red	6	%Red
	0	E0	1.138	0.00	1.179	0.00	1.221	0.00	1.262	0.00	1.304	0.00	1.345	0.00
	25	E1	0.365	67.96	0.377	68.00	0.390	68.03	0.403	68.07	0.416	68.10	0.429	68.13
	50	E2	0.347	69.50	0.359	69.54	0.371	69.58	0.384	69.61	0.396	69.65	0.408	69.68
h	75	E3	0.345	69.64	0.358	69.68	0.370	69.71	0.382	69.75	0.394	69.78	0.406	69.81
	100	E4	0.341	70.03	0.353	70.06	0.365	70.10	0.377	70.13	0.389	70.16	0.401	70.19
	125	E5	0.337	70.39	0.349	70.43	0.361	70.46	0.372	70.49	0.384	70.52	0.396	70.55
	150	E6	0.333	70.73	0.345	70.76	0.357	70.79	0.368	70.82	0.380	70.85	0.392	70.88
	0	E0	7.110	0.00	8.806	0.00	8.574	0.00	8.053	0.00	7.721	0.00	7.617	0.00
	25	E1	1.576	77.83	2.023	77.02	1.970	77.03	2.003	75.12	2.089	72.95	2.162	71.62
	50	E2	1.159	83.70	1.265	85.64	1.030	87.98	1.112	86.19	1.341	82.64	1.531	79.90
с	75	E3	1.148	83.85	1.257	85.72	1.010	88.22	0.828	89.72	0.762	90.13	0.790	89.64
	100	E4	1.174	83.49	1.322	84.99	1.134	86.78	1.009	87.47	0.963	87.52	0.974	87.21
	125	E5	1.216	82.89	1.391	84.20	1.186	86.16	1.030	87.21	0.942	87.80	0.897	88.22
	150	E6	1.206	83.04	1.373	84.41	1.169	86.37	1.012	87.43	0.921	88.07	0.875	88.51

Cuadro B. 15 Cálculo del EM y del ECM de la estimación de Ln K, h y c (Caso 3C)

Figura B. 15 Gráficas del EM y del ECM de la estimación de Ln K, h y c (Caso 3C)

Eat	No.	Tiem-	E	EM	EC	M								
ESI.	datos	ро	1	%Red	1	%Red	Caso 3	F. Estima	ación con (Total 150	25 datos datos de	de h y 25 h y 150 d	datos de atos de c	c en cada)	tiempo
	0	E0	0.040	0.0	0.9598	0.0					-			
	25	E1	-0.025	37.56	0.9241	3.72		EM- Err	or medio			Covaria	N79 HS	
	50	E2	-0.015	61.25	0.8878	7.50			or medio			Covaria		
Ln K	75	E3	-0.037	5.83	0.8878	7.50	ECM	- Error ci	uadrático r	nedio	V	arianza di	oln K – 1	0
	100	E4	-0.045	-14.23	0.8740	8.94	EOW			liculo				.0
	125	E5	-0.079	-98.99	0.8684	9.53	% Red	= Porcent	aie de rec	lucción	м	ledia de K	′= 2 0 m/d	ía
	150	E6	-0.088	-122.23	0.8628	10.10	/01100						210 1170	.u
Est.	No.	Tiem-			1		1	E	М	-				r
	datos	ро	1	%Red	2	%Red	3	%Red	4	%Red	5	%Red	6	%Red
	0	E0	0.624	0.00	0.646	0.00	0.668	0.00	0.689	0.00	0.711	0.00	0.733	0.00
	25	E1	0.056	91.09	0.058	91.08	0.060	91.06	0.062	91.04	0.064	91.03	0.066	91.01
	50	E2	0.057	90.81	0.059	90.81	0.061	90.80	0.063	90.79	0.066	90.79	0.068	90.78
h	75	E3	0.058	90.67	0.060	90.69	0.062	90.70	0.064	90.71	0.066	90.72	0.068	90.73
	100	E4	0.051	91.78	0.053	91.77	0.055	91.76	0.057	91.75	0.059	91.74	0.061	91.74
	125	E5	0.052	91.70	0.054	91.68	0.056	91.66	0.058	91.64	0.060	91.62	0.062	91.60
	150	E6	0.049	92.12	0.051	92.10	0.053	92.09	0.055	92.08	0.056	92.07	0.058	92.06
	0	E0	1.849	0.00	2.350	0.00	2.038	0.00	1.576	0.00	1.183	0.00	0.895	0.00
	25	E1	0.035	98.13	-0.094	96.00	-0.221	89.17	-0.297	81.14	-0.317	73.21	-0.291	67.48
	50	E2	0.115	93.77	0.087	96.29	0.024	98.82	-0.039	97.50	-0.080	93.24	-0.090	89.92
с	75	E3	0.072	96.12	0.051	97.84	0.058	97.17	0.098	93.81	0.167	85.90	0.257	71.32
	100	E4	0.105	94.32	0.116	95.08	0.130	93.61	0.154	90.24	0.193	83.70	0.248	72.27
	125	E5	0.153	91.71	0.150	93.60	0.144	92.93	0.138	91.23	0.136	88.54	0.136	84.78
	150	E6	0.145	92.18	0.132	94.38	0.120	94.10	0.111	92.95	0.108	90.90	0.110	87.68
Fet	No.	Tiem-						E	СМ					-
L3t.	datos	ро	1	%Red	2	%Red	3	%Red	4	%Red	5	%Red	6	%Red
	0	E0	0.731	0.00	0.756	0.00	0.782	0.00	0.807	0.00	0.832	0.00	0.858	0.00
	25	E1	0.247	66.22	0.255	66.23	0.264	66.24	0.272	66.25	0.281	66.26	0.289	66.28
	50	E2	0.227	68.91	0.235	68.93	0.243	68.94	0.251	68.96	0.258	68.97	0.266	68.99
h	75	E3	0.220	69.91	0.227	69.93	0.235	69.94	0.242	69.96	0.250	69.97	0.258	69.98
	100	E4	0.207	71.64	0.214	71.65	0.221	71.66	0.229	71.67	0.236	71.68	0.243	71.69
	125	E5	0.204	72.02	0.211	72.03	0.219	72.04	0.226	72.04	0.233	72.05	0.240	72.06
	150	E6	0.197	72.99	0.204	73.00	0.211	73.01	0.218	73.02	0.224	73.03	0.231	73.04
	0	E0	7.479	0.00	9.184	0.00	8.868	0.00	8.263	0.00	7.870	0.00	7.731	0.00
	25	E1	1.647	77.98	2.225	75.77	2.228	74.88	2.211	73.24	2.226	71.72	2.257	70.80
	50	E2	1.267	83.05	1.373	85.05	1.150	87.03	1.215	85.30	1.411	82.08	1.581	79.55
с	75	E3	1.175	84.29	1.305	85.79	1.143	87.12	1.053	87.26	1.044	86.73	1.100	85.78
	100	E4	1.195	84.02	1.422	84.52	1.328	85.02	1.274	84.58	1.276	83.79	1.325	82.87
	125	E5	1.265	83.08	1.495	83.73	1.356	84.71	1.238	85.02	1.166	85.19	1.130	85.39
	150	E6	1.259	83.17	1.485	83.83	1.349	84.79	1.231	85.10	1.156	85.31	1.116	85.56

Cuadro B. 16 Cálculo del EM y del ECM de la estimación de Ln K, h y c (Caso 3F)

Figura B. 16 Gráficas del EM y del ECM de la estimación de Ln K, h y c (Caso 3F)

Eat	No.	Tiem-	E	м	EC	м								
ESI.	datos	ро	1	%Red	1	%Red	Caso 3	G. Estim	ación con (Total 150	25 datos datos de	de h y 25 h y 150 c	datos de latos de c	c en cada)	tiempo
	0	E0	0.225	0.0	0.9849	0.0								
	25	E1	0.045	80.15	0.9376	4.80		EM- En	or medio			Covaria	nza I HS	
	50	E2	0.051	77.27	0.8982	8.80						oovana		
Ln K	75	E3	0.027	88.17	0.8982	8.80	FCM	= Frror ci	uadrático r	nedio	v	arianza d	eln K=1	0
	100	E4	0.018	92.05	0.8911	9.53	2011			libulo			o Enne n	.0
	125	E5	-0.015	93.36	0.8834	10.31	% Red	l= Porcen	taie de rec	lucción	N	edia de K	(= 2.4 m/d	ía
	150	E6	-0.023	89.96	0.8760	11.06								
Est.	No.	Tiem-						E	М					
	ualos	ρο	1	%Red	2	%Red	3	%Red	4	%Red	5	%Red	6	%Red
	0	E0	0.957	0.00	0.991	0.00	1.025	0.00	1.058	0.00	1.092	0.00	1.126	0.00
	25	E1	0.051	94.69	0.053	94.67	0.055	94.65	0.057	94.64	0.059	94.62	0.061	94.61
	50	E2	0.054	94.40	0.056	94.39	0.058	94.39	0.060	94.38	0.061	94.37	0.063	94.36
h	75	E3	0.057	94.09	0.059	94.09	0.060	94.10	0.062	94.10	0.064	94.11	0.066	94.11
	100	E4	0.050	94.76	0.052	94.74	0.054	94.73	0.056	94.72	0.058	94.71	0.060	94.70
	125	E5	0.051	94.68	0.053	94.66	0.055	94.64	0.057	94.62	0.059	94.61	0.061	94.59
	150	E6	0.049	94.92	0.050	94.91	0.052	94.89	0.054	94.88	0.056	94.87	0.058	94.86
	0	E0	2.005	0.00	2.591	0.00	2.319	0.00	1.884	0.00	1.516	0.00	1.253	0.00
	25	E1	0.041	97.98	-0.075	97.10	-0.176	92.42	-0.224	88.12	-0.218	85.62	-0.170	86.40
	50	E2	0.127	93.66	0.107	95.87	0.045	98.06	-0.021	98.91	-0.062	95.90	-0.070	94.42
с	75	E3	0.078	96.13	0.064	97.53	0.077	96.69	0.124	93.44	0.203	86.63	0.306	75.60
	100	E4	0.116	94.21	0.136	94.76	0.152	93.43	0.175	90.72	0.213	85.94	0.269	78.58
	125	E5	0.170	91.54	0.177	93.18	0.171	92.61	0.162	91.39	0.155	89.80	0.150	88.06
	150	E6	0.163	91.88	0.162	93.76	0.151	93.48	0.139	92.63	0.130	91.39	0.128	89.81
Fet	No.	Tiem-		-				E	СМ					
L3t.	datos	ро	1	%Red	2	%Red	3	%Red	4	%Red	5	%Red	6	%Red
	0	E0	1.073	0.00	1.111	0.00	1.149	0.00	1.186	0.00	1.224	0.00	1.262	0.00
	25	E1	0.219	79.60	0.226	79.62	0.234	79.63	0.241	79.65	0.249	79.66	0.256	79.68
	50	E2	0.201	81.30	0.208	81.32	0.214	81.34	0.221	81.36	0.228	81.38	0.235	81.39
h	75	E3	0.193	82.04	0.199	82.06	0.206	82.08	0.212	82.10	0.219	82.11	0.225	82.13
	100	E4	0.178	83.37	0.185	83.39	0.191	83.40	0.197	83.42	0.203	83.43	0.209	83.44
	125	E5	0.177	83.48	0.183	83.49	0.189	83.51	0.196	83.52	0.202	83.53	0.208	83.54
	150	E6	0.170	84.20	0.175	84.22	0.181	84.23	0.187	84.25	0.193	84.26	0.198	84.27
	0	E0	7.675	0.00	9.394	0.00	9.044	0.00	8.406	0.00	7.993	0.00	7.843	0.00
	25	E1	1.679	78.13	2.311	75.40	2.344	74.08	2.321	72.39	2.323	70.94	2.354	69.98
	50	E2	1.314	82.89	1.408	85.01	1.199	86.75	1.286	84.71	1.492	81.33	1.673	78.67
с	75	E3	1.192	84.46	1.323	85.92	1.198	86.76	1.158	86.22	1.193	85.08	1.288	83.58
	100	E4	1.217	84.15	1.467	84.39	1.404	84.48	1.376	83.63	1.397	82.52	1.461	81.37
	125	E5	1.292	83.16	1.542	83.58	1.426	84.23	1.325	84.23	1.263	84.19	1.235	84.25
	150	E6	1.286	83.25	1.536	83.65	1.424	84.26	1.323	84.27	1.257	84.27	1.223	84.40

Cuadro B. 17 Cálculo del EM y del ECM de la estimación de Ln K, h y c (Caso 3G)

Figura B. 17 Gráficas del EM y del ECM de la estimación de Ln K, h y c (Caso 3G)

Eat	No.	Tiem-	E	M	EC	M								
ESt.	datos	ро	1	%Red	1	%Red	Caso 3	H. Estim	ación con (Total 150	25 datos datos de	de h y 25 h y 150 d	datos de atos de c	c en cada)	tiempo
	0	E0	0.380	0.0	1.0314	0.0			-		-			
	25	E1	0.120	68.39	0.9552	7.38		EM_ En	or modio			Covaria		
	50	E2	0.125	67.11	0.9113	11.64						Covaria		
Ln K	75	E3	0.099	74.04	0.9113	11.64	ECM	- Error ci	undrático r	nodio	V	arianza d	olo K_1	0
	100	E4	0.089	76.43	0.9101	11.76	LOW			neulo	v			.0
	125	E5	0.058	84.81	0.9006	12.68	% Red	– Porcen	taie de rec	lucción	м	ledia de K	′– 2.8 m/d	lía
	150	E6	0.052	86.41	0.8916	13.55	701100						- 2.0 M/a	
Est.	No.	Tiem-						E	м			1		
	datos	ро	1	%Red	2	%Red	3	%Red	4	%Red	5	%Red	6	%Red
	0	E0	1.192	0.00	1.235	0.00	1.277	0.00	1.319	0.00	1.361	0.00	1.403	0.00
	25	E1	0.047	96.02	0.049	96.00	0.051	95.98	0.053	95.96	0.055	95.94	0.057	95.92
	50	E2	0.051	95.70	0.053	95.69	0.055	95.68	0.057	95.67	0.059	95.65	0.061	95.65
h	75	E3	0.056	95.30	0.058	95.30	0.060	95.30	0.062	95.31	0.064	95.31	0.066	95.31
	100	E4	0.050	95.81	0.052	95.80	0.054	95.78	0.056	95.77	0.058	95.76	0.060	95.75
	125	E5	0.051	95.74	0.053	95.72	0.055	95.70	0.057	95.68	0.059	95.67	0.061	95.65
	150	E6	0.049	95.92	0.051	95.91	0.052	95.89	0.054	95.88	0.056	95.86	0.058	95.85
	0	E0	2.160	0.00	2.829	0.00	2.596	0.00	2.187	0.00	1.845	0.00	1.607	0.00
	25	E1	0.044	97.97	-0.061	97.84	-0.137	94.71	-0.158	92.79	-0.127	93.12	-0.058	96.42
	50	E2	0.137	93.68	0.123	95.66	0.062	97.60	-0.003	99.88	-0.041	97.76	-0.042	97.36
с	75	E3	0.082	96.22	0.074	97.38	0.093	96.41	0.149	93.19	0.241	86.95	0.360	77.56
	100	E4	0.126	94.17	0.154	94.57	0.171	93.40	0.193	91.18	0.230	87.52	0.286	82.19
	125	E5	0.184	91.50	0.200	92.92	0.196	92.46	0.183	91.62	0.171	90.73	0.161	89.98
	150	E6	0.179	91.74	0.188	93.36	0.178	93.13	0.163	92.55	0.150	91.87	0.142	91.14
Fet	No.	Tiem-						E	СМ					
∟3ι.	datos	ро	1	%Red	2	%Red	3	%Red	4	%Red	5	%Red	6	%Red
	0	E0	1.337	0.00	1.384	0.00	1.431	0.00	1.479	0.00	1.526	0.00	1.573	0.00
	25	E1	0.200	85.03	0.207	85.05	0.214	85.06	0.221	85.08	0.227	85.09	0.234	85.10
	50	E2	0.184	86.22	0.190	86.24	0.197	86.26	0.203	86.28	0.209	86.29	0.215	86.31
h	75	E3	0.176	86.81	0.182	86.83	0.188	86.85	0.194	86.86	0.200	86.88	0.206	86.89
	100	E4	0.162	87.91	0.167	87.93	0.173	87.94	0.178	87.95	0.184	87.97	0.189	87.98
	125	E5	0.162	87.88	0.168	87.90	0.173	87.91	0.179	87.92	0.184	87.94	0.190	87.95
	150	E6	0.154	88.49	0.159	88.50	0.164	88.52	0.170	88.53	0.175	88.54	0.180	88.55
	0	E0	7.874	0.00	9.610	0.00	9.233	0.00	8.571	0.00	8.143	0.00	7.987	0.00
	25	E1	1.703	78.38	2.381	75.22	2.446	73.51	2.422	71.74	2.417	70.32	2.452	69.31
	50	E2	1.351	82.85	1.431	85.11	1.241	86.56	1.358	84.15	1.581	80.59	1.773	77.80
с	75	E3	1.208	84.66	1.337	86.09	1.250	86.47	1.259	85.31	1.334	83.62	1.467	81.63
	100	E4	1.237	84.29	1.505	84.34	1.469	84.10	1.462	82.94	1.497	81.62	1.570	80.34
	125	E5	1.316	83.28	1.584	83.52	1.488	83.89	1.400	83.67	1.344	83.50	1.319	83.48
	150	E6	1.309	83.37	1.580	83.56	1.488	83.88	1.399	83.67	1.340	83.55	1.309	83.61

Cuadro B. 18 Cálculo del EM y del ECM de la estimación de Ln K, h y c (Caso 3H)

Figura B. 18 Gráficas del EM y del ECM de la estimación de Ln K, h y c (Caso 3H)

E et	No.	Tiem-	E	M	EC	M								
ESI.	datos	ро	1	%Red	1	%Red	Caso 3	3I. Estima	ación con (Total 150	25 datos () datos de	de h y 25 d h y 150 d	datos de o latos de c	c en cada)	tiempo
	0	E0	0.514	0.0	1.0879	0.0								
	25	E1	0.197	61.74	0.9770	10.20		EM- En	or medio			Covaria	nza I HS	
	50	E2	0.201	60.94	0.9281	14.69						oovana		
Ln K	75	E3	0.173	66.38	0.9281	14.69	FCM	= Frror ci	uadrático r	nedio	V	arianza d	eln K=1	0
	100	E4	0.163	68.17	0.9320	14.32		2.101.00		liouio				
	125	E5	0.133	74.14	0.9212	15.32	% Red	l= Porcen	taie de rec	lucción	м	edia de K	(= 3.2 m/d	ía
	150	E6	0.128	75.02	0.9111	16.25								
Est.	No.	Tiem-						E	м					1
	ualos	ρο	1	%Red	2	%Red	3	%Red	4	%Red	5	%Red	6	%Red
	0	E0	1.368	0.00	1.417	0.00	1.465	0.00	1.514	0.00	1.562	0.00	1.611	0.00
	25	E1	0.045	96.72	0.047	96.70	0.049	96.67	0.051	96.65	0.053	96.62	0.055	96.60
	50	E2	0.050	96.36	0.052	96.34	0.054	96.33	0.056	96.31	0.058	96.30	0.060	96.29
h	75	E3	0.056	95.91	0.058	95.90	0.060	95.90	0.062	95.90	0.064	95.90	0.066	95.90
	100	E4	0.050	96.33	0.052	96.31	0.054	96.30	0.056	96.28	0.058	96.27	0.060	96.25
	125	E5	0.051	96.28	0.053	96.25	0.055	96.23	0.057	96.21	0.059	96.19	0.062	96.18
	150	E6	0.049	96.42	0.051	96.40	0.053	96.39	0.055	96.37	0.057	96.36	0.059	96.34
	0	E0	2.315	0.00	3.066	0.00	2.870	0.00	2.489	0.00	2.172	0.00	1.958	0.00
	25	E1	0.045	98.06	-0.051	98.32	-0.104	96.37	-0.097	96.09	-0.041	98.09	0.050	97.46
	50	E2	0.144	93.78	0.136	95.58	0.077	97.32	0.014	99.44	-0.019	99.12	-0.011	99.46
с	75	E3	0.085	96.35	0.082	97.31	0.108	96.24	0.173	93.04	0.279	87.13	0.418	78.65
	100	E4	0.135	94.18	0.170	94.46	0.188	93.46	0.208	91.65	0.245	88.74	0.301	84.62
	125	E5	0.196	91.53	0.222	92.77	0.217	92.42	0.202	91.90	0.185	91.49	0.170	91.30
	150	E6	0.192	91.69	0.212	93.10	0.203	92.94	0.184	92.61	0.167	92.32	0.155	92.09
Ect	No.	Tiem-						E	СМ					
L3I.	datos	ро	1	%Red	2	%Red	3	%Red	4	%Red	5	%Red	6	%Red
	0	E0	1.540	0.00	1.594	0.00	1.649	0.00	1.703	0.00	1.758	0.00	1.812	0.00
	25	E1	0.187	87.88	0.193	87.89	0.199	87.91	0.206	87.92	0.212	87.93	0.219	87.94
	50	E2	0.174	88.73	0.179	88.75	0.185	88.76	0.191	88.78	0.197	88.79	0.203	88.80
h	75	E3	0.166	89.19	0.172	89.21	0.178	89.22	0.183	89.24	0.189	89.25	0.195	89.26
	100	E4	0.152	90.11	0.157	90.13	0.163	90.14	0.168	90.15	0.173	90.16	0.178	90.17
	125	E5	0.154	90.00	0.159	90.01	0.164	90.02	0.170	90.04	0.175	90.05	0.180	90.06
	150	E6	0.146	90.53	0.151	90.54	0.156	90.55	0.161	90.57	0.166	90.58	0.171	90.59
	0	E0	8.075	0.00	9.833	0.00	9.436	0.00	8.754	0.00	8.318	0.00	8.161	0.00
	25	E1	1.719	78.72	2.439	75.20	2.536	73.12	2.516	71.26	2.508	69.85	2.549	68.77
	50	E2	1.379	82.92	1.446	85.30	1.282	86.41	1.437	83.59	1.676	79.85	1.881	76.96
с	75	E3	1.221	84.88	1.350	86.27	1.304	86.18	1.359	84.47	1.472	82.31	1.641	79.89
	100	E4	1.255	84.46	1.541	84.33	1.530	83.79	1.540	82.41	1.582	80.99	1.659	79.67
	125	E5	1.337	83.44	1.622	83.51	1.545	83.63	1.466	83.25	1.413	83.01	1.388	82.99
	150	E6	1.330	83.53	1.620	83.53	1.547	83.60	1.468	83.23	1.410	83.05	1.379	83.10

Cuadro B. 19 Cálculo del EM y del ECM de la estimación de Ln K, h y c (Caso 3I)

Figura B. 19 Gráficas del EM y del ECM de la estimación de Ln K, h y c (Caso 3I)

E et	No.	Tiem-	E	M	EC	м								
ESt.	datos	ро	1	%Red	1	%Red	Caso 3	3J. Estima (ción con 2 Total 150	5 datos de l	e h y 25 c h y 150 d	latos de c atos de c)	en cada	tiempo
	0	E0	0.630	0.0	1.1472	0.0								
	25	E1	0.270	57.04	1.0019	12.66		EM- Err	or medio			Covaria	9H I 670	
	50	E2	0.274	56.41	0.9481	17.35			or medio			Covaria		
Ln K	75	E3	0.245	61.11	0.9481	17.35	FCM	– Error cu	uadrático n	nedio	V	arianza d	oln K-1	0
	100	E4	0.236	62.58	0.9562	16.65	LOW			iculo	v			.0
	125	E5	0.206	67.24	0.9444	17.68	% Rec	= Porcent	taie de rec	lucción	N	ledia de k	(= 3.6 m/c	lía
	150	E6	0.203	67.75	0.9336	18.62								
Est.	No.	Tiem-		1	1			E	м	r	1	r	1	r
	datos	ро	1	%Red	2	%Red	3	%Red	4	%Red	5	%Red	6	%Red
	0	E0	1.503	0.00	1.556	0.00	1.609	0.00	1.663	0.00	1.716	0.00	1.769	0.00
	25	E1	0.043	97.15	0.045	97.12	0.047	97.09	0.049	97.06	0.051	97.03	0.053	97.00
	50	E2	0.049	96.75	0.051	96.73	0.053	96.71	0.055	96.69	0.057	96.67	0.059	96.65
h	75	E3	0.056	96.25	0.058	96.25	0.061	96.24	0.063	96.24	0.065	96.23	0.067	96.23
	100	E4	0.051	96.63	0.053	96.60	0.055	96.58	0.057	96.56	0.059	96.55	0.061	96.53
	125	E5	0.051	96.59	0.053	96.57	0.056	96.54	0.058	96.52	0.060	96.50	0.062	96.48
	150	E6	0.049	96.71	0.051	96.69	0.054	96.67	0.056	96.65	0.058	96.64	0.060	96.62
	0	E0	2.467	0.00	3.297	0.00	3.138	0.00	2.783	0.00	2.490	0.00	2.301	0.00
	25	E1	0.044	98.23	-0.046	98.62	-0.076	97.58	-0.043	98.47	0.038	98.49	0.150	93.47
	50	E2	0.150	93.91	0.146	95.56	0.090	97.15	0.030	98.92	0.004	99.82	0.025	98.92
с	75	E3	0.087	96.48	0.089	97.29	0.121	96.15	0.196	92.97	0.317	87.28	0.475	79.37
	100	E4	0.143	94.21	0.184	94.43	0.201	93.58	0.219	92.12	0.255	89.77	0.312	86.44
	125	E5	0.207	91.61	0.241	92.71	0.236	92.49	0.216	92.23	0.195	92.18	0.176	92.33
	150	E6	0.204	91.72	0.232	92.96	0.223	92.89	0.201	92.78	0.179	92.80	0.164	92.88
Fst	No.	Tiem-						EC	м				-	
200	datos	ро	1	%Red	2	%Red	3	%Red	4	%Red	5	%Red	6	%Red
	0	E0	1.697	0.00	1.757	0.00	1.817	0.00	1.877	0.00	1.937	0.00	1.997	0.00
	25	E1	0.177	89.58	0.183	89.60	0.189	89.61	0.195	89.62	0.201	89.63	0.207	89.64
	50	E2	0.167	90.18	0.172	90.20	0.178	90.21	0.184	90.22	0.189	90.23	0.195	90.24
h	75	E3	0.161	90.53	0.166	90.54	0.172	90.55	0.177	90.56	0.183	90.57	0.188	90.58
	100	E4	0.148	91.28	0.153	91.29	0.158	91.30	0.163	91.31	0.168	91.32	0.173	91.33
	125	E5	0.151	91.10	0.156	91.12	0.161	91.13	0.166	91.14	0.171	91.15	0.177	91.16
	150	E6	0.143	91.58	0.148	91.59	0.153	91.60	0.157	91.61	0.162	91.62	0.167	91.63
	0	E0	8.275	0.00	10.058	0.00	9.645	0.00	8.951	0.00	8.511	0.00	8.356	0.00
	25	E1	1.726	79.14	2.485	75.29	2.618	72.86	2.606	70.89	2.598	69.48	2.644	68.36
	50	E2	1.400	83.08	1.455	85.53	1.328	86.24	1.520	83.02	1.777	79.12	1.993	76.15
с	75	E3	1.231	85.12	1.365	86.43	1.363	85.86	1.459	83.70	1.602	81.17	1.804	78.42
	100	E4	1.272	84.63	1.576	84.33	1.590	83.52	1.611	82.00	1.654	80.56	1.730	79.30
	125	E5	1.356	83.62	1.658	83.52	1.600	83.41	1.529	82.92	1.474	82.68	1.445	82.71
	150	E6	1.348	83.71	1.657	83.52	1.605	83.36	1.532	82.89	1.472	82.70	1.436	82.82

Cuadro B. 20 Cálculo del EM y del ECM de la estimación de Ln K, h y c (Caso 3J)

Figura B. 20 Gráficas del EM y del ECM de la estimación de Ln K, h y c (Caso 3J)

E et	No.	Tiem-	E	M	EC	M								
ESt.	datos	ро	1	%Red	1	%Red	Caso 3	K. Estima (ción con Total 150	25 datos o datos de	de h y 25 h y 150 c	datos de o latos de c)	c en cada	tiempo
	0	E0	0.735	0.0	1.2080	0.0								
	25	E1	0.343	53.28	1.0303	14.71		EM- Erm	or medio			Covaria	nza I HS	
	50	E2	0.348	52.69	0.9714	19.59			or mealo			oovana		
Ln K	75	E3	0.316	57.01	0.9714	19.59	FCM	= Error cu	adrático r	nedio	v	/arianza de	eln K=1	0
	100	E4	0.306	58.29	0.9824	18.68	2011	2.101.04		liouio				
	125	E5	0.279	62.07	0.9703	19.68	% Red	= Porcent	aje de rec	ducción	N	ledia de K	= 4.0 m/c	lía
	150	E6	0.276	62.38	0.9592	20.60								
Est.	No.	Tiem-		1	1		1	El	Λ	1		1		1
	ualos	ρο	1	%Red	2	%Red	3	%Red	4	%Red	5	%Red	6	%Red
	0	E0	1.612	0.00	1.669	0.00	1.726	0.00	1.783	0.00	1.841	0.00	1.898	0.00
	25	E1	0.041	97.45	0.043	97.41	0.045	97.37	0.048	97.34	0.050	97.30	0.052	97.27
	50	E2	0.048	97.01	0.050	96.98	0.053	96.96	0.055	96.93	0.057	96.91	0.059	96.89
h	75	E3	0.057	96.48	0.059	96.47	0.061	96.46	0.063	96.46	0.065	96.45	0.068	96.44
	100	E4	0.051	96.82	0.054	96.79	0.056	96.77	0.058	96.74	0.060	96.72	0.063	96.70
	125	E5	0.051	96.81	0.054	96.78	0.056	96.75	0.058	96.73	0.061	96.71	0.063	96.69
	150	E6	0.050	96.90	0.052	96.88	0.054	96.86	0.056	96.84	0.059	96.82	0.061	96.80
	0	E0	2.620	0.00	3.530	0.00	3.407	0.00	3.078	0.00	2.810	0.00	2.646	0.00
	25	E1	0.040	98.46	-0.043	98.78	-0.052	98.48	0.008	99.73	0.114	95.96	0.248	90.63
	50	E2	0.156	94.06	0.156	95.58	0.102	97.00	0.047	98.46	0.031	98.89	0.066	97.52
с	75	E3	0.089	96.61	0.096	97.29	0.132	96.12	0.216	92.97	0.352	87.48	0.530	79.98
	100	E4	0.150	94.27	0.196	94.45	0.211	93.79	0.226	92.65	0.260	90.76	0.317	88.03
	125	E5	0.217	91.71	0.257	92.72	0.250	92.65	0.226	92.65	0.200	92.89	0.177	93.30
	150	E6	0.215	91.78	0.250	92.92	0.239	92.97	0.213	93.09	0.187	93.36	0.168	93.67
Est	No.	Tiem-						EC	М					
200	datos	ро	1	%Red	2	%Red	3	%Red	4	%Red	5	%Red	6	%Red
	0	E0	1.825	0.00	1.889	0.00	1.954	0.00	2.019	0.00	2.083	0.00	2.148	0.00
	25	E1	0.169	90.74	0.175	90.75	0.181	90.76	0.186	90.77	0.192	90.78	0.198	90.79
	50	E2	0.162	91.14	0.167	91.15	0.173	91.16	0.178	91.17	0.184	91.17	0.189	91.18
h	75	E3	0.158	91.35	0.163	91.36	0.169	91.37	0.174	91.38	0.179	91.39	0.185	91.39
	100	E4	0.147	91.93	0.152	91.94	0.157	91.95	0.162	91.96	0.167	91.96	0.172	91.97
	125	E5	0.151	91.70	0.157	91.71	0.162	91.72	0.167	91.73	0.172	91.74	0.177	91.75
	150	E6	0.144	92.13	0.148	92.14	0.153	92.15	0.158	92.16	0.163	92.17	0.168	92.18
	0	E0	8.480	0.00	10.291	0.00	9.867	0.00	9.165	0.00	8.725	0.00	8.576	0.00
	25	E1	1.726	79.64	2.524	75.47	2.696	72.68	2.696	70.59	2.690	69.17	2.742	68.03
	50	E2	1.414	83.33	1.464	85.77	1.379	86.02	1.610	82.43	1.883	78.41	2.111	75.38
с	75	E3	1.239	85.39	1.385	86.54	1.429	85.52	1.559	82.99	1.727	80.21	1.955	77.21
	100	E4	1.288	84.81	1.614	84.32	1.653	83.25	1.681	81.66	1.718	80.31	1.783	79.21
	125	E5	1.373	83.81	1.695	83.53	1.658	83.19	1.591	82.64	1.530	82.46	1.491	82.62
	150	E6	1.365	83.91	1.695	83.53	1.663	83.14	1.594	82.60	1.529	82.48	1.483	82.71

Cuadro B. 21 Cálculo del EM y del ECM de la estimación de Ln K, h y c (Caso 3K)

Figura B. 21 Gráficas del EM y del ECM de la estimación de Ln K, h y c (Caso 3K)

Eat	No.	Tiem-	E	M	EC	M								
ESI.	datos	ро	1	%Red	1	%Red	Caso 4	A. Estim	ación con (Total 150	25 datos datos de	de h y 25 h y 150 d	datos de atos de c	c en cada)	tiempo
	0	E0	0.290	0.0	0.5603	0.0			-		-		-	
	25	E1	0.140	51.77	0.4946	11.72		EM- En	or medio			Covaria	nza I HS	
	50	E2	0.146	49.62	0.4797	14.38			or medio			Covaria		
Ln K	75	E3	0.131	54.76	0.4797	14.38	ECM	- Error ci	uadrático r	nedio	Ve	arianza de	aln K-0	25
	100	E4	0.127	56.32	0.4757	15.10	LOW			liculo	ve		2 EITR= 0.	20
	125	E5	0.124	57.37	0.4689	16.31	% Red	= Porcen	taie de rec	lucción	м	ledia de K	(= 1.6 m/d	ía
	150	E6	0.115	60.25	0.4672	16.62	701100						- 1.0 11/4	
Est	No.	Tiem-		0	n			E	м					1
200	datos	ро	1	%Red	2	%Red	3	%Red	4	%Red	5	%Red	6	%Red
	0	E0	0.588	0.00	0.609	0.00	0.629	0.00	0.650	0.00	0.671	0.00	0.692	0.00
	25	E1	0.028	95.32	0.028	95.35	0.029	95.38	0.030	95.41	0.031	95.43	0.031	95.46
	50	E2	0.027	95.39	0.028	95.42	0.029	95.45	0.029	95.48	0.030	95.51	0.031	95.53
h	75	E3	0.026	95.62	0.027	95.63	0.027	95.64	0.028	95.64	0.029	95.65	0.030	95.66
	100	E4	0.017	97.17	0.017	97.17	0.018	97.17	0.018	97.17	0.019	97.17	0.020	97.17
	125	E5	0.018	96.96	0.019	96.96	0.019	96.95	0.020	96.95	0.020	96.95	0.021	96.94
	150	E6	0.017	97.18	0.017	97.18	0.018	97.17	0.018	97.16	0.019	97.16	0.020	97.15
	0	E0	0.944	0.00	1.452	0.00	1.390	0.00	1.120	0.00	0.832	0.00	0.595	0.00
	25	E1	0.030	96.81	0.021	98.53	-0.040	97.13	-0.100	91.11	-0.129	84.53	-0.121	79.69
	50	E2	0.017	98.23	0.005	99.67	-0.019	98.60	-0.033	97.03	-0.025	96.95	0.007	98.87
с	75	E3	0.020	97.92	0.021	98.52	0.025	98.22	0.032	97.12	0.046	94.46	0.068	88.52
	100	E4	0.029	96.96	0.022	98.51	0.009	99.37	-0.004	99.64	-0.007	99.11	0.003	99.46
	125	E5	0.027	97.17	0.016	98.89	0.004	99.72	-0.010	99.14	-0.019	97.74	-0.020	96.65
	150	E6	0.019	97.96	0.004	99.69	-0.010	99.26	-0.025	97.80	-0.035	95.81	-0.039	93.51
Ect	No.	Tiem-						E	СМ					
L3I.	datos	ро	1	%Red	2	%Red	3	%Red	4	%Red	5	%Red	6	%Red
	0	E0	0.662	0.00	0.686	0.00	0.709	0.00	0.733	0.00	0.756	0.00	0.779	0.00
	25	E1	0.120	81.93	0.124	81.95	0.128	81.97	0.132	81.99	0.136	82.00	0.140	82.02
	50	E2	0.109	83.56	0.113	83.59	0.116	83.61	0.120	83.63	0.124	83.65	0.127	83.67
h	75	E3	0.101	84.83	0.104	84.84	0.107	84.85	0.111	84.87	0.114	84.88	0.118	84.89
	100	E4	0.094	85.88	0.097	85.90	0.100	85.91	0.103	85.91	0.106	85.92	0.110	85.93
	125	E5	0.091	86.21	0.094	86.22	0.098	86.23	0.101	86.24	0.104	86.24	0.107	86.25
	150	E6	0.091	86.23	0.094	86.24	0.098	86.24	0.101	86.25	0.104	86.25	0.107	86.26
	0	E0	4.229	0.00	5.502	0.00	5.459	0.00	5.067	0.00	4.731	0.00	4.545	0.00
	25	E1	0.687	83.75	0.963	82.49	0.944	82.72	0.915	81.94	0.930	80.35	0.973	78.59
	50	E2	0.613	85.51	0.709	87.12	0.677	87.60	0.708	86.03	0.801	83.07	0.910	79.99
с	75	E3	0.657	84.45	0.775	85.91	0.712	86.97	0.624	87.69	0.572	87.90	0.567	87.52
	100	E4	0.680	83.93	0.743	86.49	0.696	87.26	0.685	86.47	0.730	84.58	0.823	81.90
	125	E5	0.658	84.43	0.749	86.40	0.707	87.06	0.656	87.05	0.630	86.68	0.639	85.94
	150	E6	0.672	84.12	0.754	86.30	0.727	86.68	0.686	86.46	0.658	86.10	0.653	85.64

Cuadro B. 22 Cálculo del EM y del ECM de la estimación de Ln K, h y c (Caso 4A)

Figura B. 22 Gráficas del EM y del ECM de la estimación de Ln K, h y c (Caso 4A)

E et	No.	Tiem-	EM		ECM										
ESI.	datos	ро	1	%Red	1	%Red	Caso 4	B. Estim	ación con (Total 150	25 datos datos de	de h y 25 h y 150 d	datos de atos de C	c en cada)	tiempo	
	0	E0	0.130	0.0	0.6904	0.0			-		-				
	25	E1	0.059	54.82	0.6592	4.52		EM_ Err	or modio		Covarianza L HS				
	50	E2	0.065	50.07	0.6309	8.61									
Ln K	75	E3	0.050	61.79	0.6309	8.61	ECM	- Error ci	uadrático r	nedio	Varianza da La K. 0.5				
	100	E4	0.044	66.49	0.6201	10.18	LOW			neulo					
	125	E5	0.031	75.84	0.6114	11.44	% Red	= Porcent	taie de rec	lucción	м	ledia de K	′=16m/d	ía	
	150	E6	0.022	0.022 82.96 0.6091 11.77											
Est.	No.	Tiem-		1	1			E	м		1				
	datos	ро	1	%Red	2	%Red	3	%Red	4	%Red	5	%Red	6	%Red	
	0	E0	0.470	0.00	0.486	0.00	0.502	0.00	0.519	0.00	0.535	0.00	0.552	0.00	
	25	E1	0.039	91.72	0.040	91.74	0.041	91.76	0.043	91.78	0.044	91.79	0.045	91.81	
	50	E2	0.038	91.84	0.040	91.86	0.041	91.88	0.042	91.90	0.043	91.92	0.045	91.93	
h	75	E3	0.038	91.98	0.039	92.00	0.040	92.01	0.041	92.03	0.043	92.04	0.044	92.05	
	100	E4	0.028	93.94	0.029	93.94	0.030	93.94	0.031	93.94	0.032	93.94	0.033	93.94	
	125	E5	0.030	93.62	0.031	93.61	0.032	93.60	0.033	93.59	0.034	93.58	0.035	93.57	
	150	E6	0.028	94.00	0.029	93.99	0.030	93.98	0.031	93.97	0.032	93.96	0.033	93.96	
	0	E0	1.268	0.00	1.756	0.00	1.573	0.00	1.202	0.00	0.848	0.00	0.568	0.00	
с	25	E1	0.034	97.35	-0.025	98.59	-0.123	92.21	-0.200	83.39	-0.235	72.34	-0.229	59.74	
	50	E2	0.047	96.29	0.021	98.78	-0.020	98.72	-0.051	95.77	-0.060	92.97	-0.045	92.09	
	75	E3	0.029	97.71	0.019	98.91	0.027	98.26	0.050	95.81	0.084	90.09	0.126	77.76	
	100	E4	0.044	96.55	0.036	97.97	0.036	97.70	0.042	96.49	0.059	93.06	0.089	84.37	
	125	E5	0.059	95.36	0.045	97.44	0.038	97.60	0.032	97.30	0.030	96.46	0.032	94.38	
	150	E6	0.048	96.19	0.027	98.46	0.016	98.99	0.009	99.28	0.005	99.42	0.005	99.11	
Fst	No.	Tiem-		ECM											
201.	datos	ро	1	%Red	2	%Red	3	%Red	4	%Red	5	%Red	6	%Red	
	0	E0	0.551	0.00	0.570	0.00	0.589	0.00	0.608	0.00	0.627	0.00	0.647	0.00	
	25	E1	0.177	67.93	0.183	67.95	0.189	67.96	0.195	67.98	0.201	67.99	0.207	68.00	
	50	E2	0.163	70.48	0.168	70.50	0.174	70.53	0.179	70.54	0.185	70.56	0.190	70.58	
h	75	E3	0.154	72.09	0.159	72.11	0.164	72.12	0.169	72.14	0.175	72.15	0.180	72.16	
	100	E4	0.144	73.81	0.149	73.82	0.154	73.83	0.159	73.84	0.164	73.84	0.169	73.85	
	125	E5	0.142	74.16	0.147	74.17	0.152	74.18	0.157	74.18	0.162	74.18	0.167	74.19	
	150	E6	0.140	74.65	0.144	74.65	0.149	74.66	0.154	74.66	0.159	74.67	0.164	74.67	
	0	E0	5.587	0.00	7.039	0.00	6.852	0.00	6.342	0.00	5.970	0.00	5.803	0.00	
	25	E1	1.053	81.15	1.431	79.67	1.377	79.91	1.340	78.87	1.359	77.24	1.398	75.90	
	50	E2	0.854	84.71	0.945	86.57	0.808	88.20	0.844	86.69	0.987	83.47	1.121	80.67	
с	75	E3	0.866	84.50	0.988	85.96	0.847	87.64	0.717	88.69	0.653	89.06	0.648	88.83	
	100	E4	0.875	84.34	0.991	85.91	0.897	86.91	0.861	86.42	0.892	85.05	0.972	83.24	
	125	E5	0.889	84.08	1.017	85.55	0.920	86.57	0.842	86.73	0.799	86.61	0.789	86.40	
	150	E6	0.892	84.03	1.014	85.59	0.930	86.43	0.858	86.47	0.813	86.38	0.793	86.33	

Cuadro B. 23 Cálculo del EM y del ECM de la estimación de Ln K, h y c (Caso 4B)

Figura B. 23 Gráficas del EM y del ECM de la estimación de Ln K, h y c (Caso 4B)

Eat	No.	Tiem- po	EM		ECM										
ESI.	datos		1	%Red	1	%Red	(Total 150 datos de h y 25 datos de c en cada tiempo								
	0	E0	-0.028	0.0	0.8309	0.0			-		-		-		
	25	E1	-0.012	55.81	0.7953	4.29		EM_ Err	or modio						
	50	E2	-0.003	88.38	0.7603	8.50									
Ln K	75	E3	-0.020	29.80	0.7603	8.50	ECM	- Error cu	undrático r	nodio					
	100	E4	-0.026	6.36	0.7436	10.51	LOW			neulo					
	125	E5	-0.050	-76.06	0.7365	11.37	% Red	= Porcent	aie de rec	lucción	м	edia de K	′= 1.6 m/d	ía	
	150	E6	-0.060 -111.47 0.7337 11.71												
Est.	No.	Tiem-													
	datos	ро	1	%Red	2	%Red	3	%Red	4	%Red	5	%Red	6	%Red	
	0	E0	0.313	0.00	0.324	0.00	0.335	0.00	0.346	0.00	0.357	0.00	0.367	0.00	
	25	E1	0.050	83.97	0.052	83.96	0.054	83.96	0.056	83.95	0.057	83.94	0.059	83.93	
	50	E2	0.050	83.95	0.052	83.95	0.054	83.95	0.055	83.96	0.057	83.96	0.059	83.96	
h	75	E3	0.050	84.21	0.051	84.23	0.053	84.25	0.054	84.27	0.056	84.29	0.058	84.31	
	100	E4	0.041	86.92	0.042	86.91	0.044	86.91	0.045	86.90	0.047	86.89	0.048	86.88	
	125	E5	0.042	86.63	0.043	86.60	0.045	86.57	0.047	86.54	0.048	86.52	0.050	86.50	
	150	E6	0.040	87.39	0.041	87.37	0.042	87.35	0.044	87.33	0.045	87.31	0.047	87.29	
	0	E0	1.505	0.00	1.958	0.00	1.684	0.00	1.245	0.00	0.853	0.00	0.551	0.00	
с	25	E1	0.031	97.94	-0.072	96.32	-0.199	88.19	-0.289	76.78	-0.328	61.53	-0.322	41.49	
	50	E2	0.075	95.03	0.041	97.91	-0.012	99.26	-0.057	95.45	-0.079	90.77	-0.076	86.20	
	75	E3	0.043	97.15	0.022	98.90	0.029	98.30	0.061	95.09	0.112	86.85	0.175	68.15	
	100	E4	0.065	95.70	0.060	96.96	0.069	95.92	0.087	92.99	0.119	86.05	0.164	70.15	
	125	E5	0.095	93.67	0.080	95.89	0.075	95.55	0.073	94.11	0.075	91.20	0.080	85.53	
	150	E6	0.084	94.44	0.059	96.97	0.049	97.11	0.044	96.45	0.045	94.77	0.049	91.08	
Fet	No.	Tiem-		ECM											
L3t.	datos	ро	1	%Red	2	%Red	3	%Red	4	%Red	5	%Red	6	%Red	
	0	E0	0.462	0.00	0.478	0.00	0.494	0.00	0.510	0.00	0.526	0.00	0.542	0.00	
	25	E1	0.232	49.73	0.240	49.73	0.248	49.74	0.256	49.75	0.264	49.75	0.273	49.76	
	50	E2	0.216	53.35	0.223	53.36	0.230	53.38	0.238	53.39	0.245	53.40	0.253	53.41	
h	75	E3	0.208	55.01	0.215	55.02	0.222	55.03	0.229	55.04	0.237	55.05	0.244	55.06	
	100	E4	0.197	57.33	0.204	57.33	0.211	57.33	0.218	57.34	0.225	57.34	0.231	57.34	
	125	E5	0.195	57.88	0.201	57.88	0.208	57.87	0.215	57.87	0.222	57.88	0.229	57.87	
	150	E6	0.190	58.87	0.197	58.87	0.203	58.87	0.210	58.87	0.217	58.87	0.223	58.87	
	0	E0	6.542	0.00	8.126	0.00	7.873	0.00	7.317	0.00	6.940	0.00	6.793	0.00	
	25	E1	1.358	79.24	1.809	77.74	1.754	77.72	1.727	76.40	1.751	74.76	1.789	73.66	
	50	E2	1.052	83.92	1.144	85.92	0.942	88.03	0.986	86.52	1.162	83.25	1.316	80.62	
с	75	E3	1.026	84.32	1.141	85.96	0.955	87.87	0.810	88.92	0.748	89.22	0.755	88.89	
	100	E4	1.035	84.17	1.190	85.36	1.070	86.41	1.007	86.23	1.013	85.40	1.069	84.26	
	125	E5	1.074	83.58	1.239	84.76	1.102	86.01	0.993	86.43	0.931	86.59	0.903	86.71	
	150	E6	1.070	83.64	1.229	84.88	1.098	86.05	0.992	86.44	0.928	86.64	0.893	86.85	

Cuadro B. 24 Cálculo del EM y del ECM de la estimación de Ln K, h y c (Caso 4C)

Figura B. 24 Gráficas del EM y del ECM de la estimación de Ln K, h y c (Caso 4C)

Eat	No.	Tiem- po	EM		ECM											
ESI.	datos		1	%Red	1	%Red	Caso 4F. Estimacion con 25 datos de h y 25 datos de c en cada tiempo (Total 150 datos de h y 150 datos de c)									
	0	E0	-0.328	0.0	1.1231	0.0			-		-		-			
	25	E1	-0.123	62.38	1.0238	8.84		EM- En	or media		Coverienze L HS					
	50	E2	-0.102	68.82	0.9889	11.94										
Ln K	75	E3	-0.123	62.67	0.9889	11.94	ECM	– Error ci	uadrático u	medio	Varianza da La K-125					
	100	E4	-0.129	60.77	0.9645	14.12	2011									
	125	E5	-0.174	46.98	0.9644	14.13	% Rec	= Porcen	taie de rec	ducción	N	ledia de K	(=16m/d	ía		
	150	E6	-0.185	-0.185 43.65 0.9594 14.58												
Est.	No.	Tiem-						E	М							
	datos	ро	1	%Red	2	%Red	3	%Red	4	%Red	5	%Red	6	%Red		
	0	E0	-0.053	0.00	-0.056	0.00	-0.058	0.00	-0.061	0.00	-0.063	0.00	-0.066	0.00		
	25	E1	0.075	-41.43	0.078	-40.09	0.081	-38.86	0.084	-37.71	0.087	-36.65	0.089	-35.67		
	50	E2	0.078	-45.33	0.080	-43.67	0.083	-42.14	0.086	-40.73	0.088	-39.44	0.091	-38.23		
h	75	E3	0.073	-37.57	0.076	-35.76	0.078	-34.09	0.081	-32.55	0.083	-31.15	0.086	-29.83		
	100	E4	0.067	-24.80	0.069	-23.38	0.071	-22.07	0.074	-20.87	0.076	-19.76	0.078	-18.73		
	125	E5	0.066	-23.40	0.068	-22.11	0.071	-20.92	0.073	-19.82	0.075	-18.81	0.078	-17.88		
	150	E6	0.062	-16.97	0.065	-15.68	0.067	-14.48	0.069	-13.38	0.071	-12.38	0.073	-11.43		
	0	E0	1.868	0.00	2.250	0.00	1.835	0.00	1.304	0.00	0.868	0.00	0.551	0.00		
с	25	E1	0.017	99.08	-0.166	92.61	-0.349	81.00	-0.471	63.89	-0.524	39.71	-0.522	5.26		
	50	E2	0.124	93.34	0.085	96.20	0.015	99.17	-0.053	95.94	-0.095	89.02	-0.106	80.73		
	75	E3	0.090	95.19	0.056	97.52	0.050	97.30	0.085	93.48	0.160	81.62	0.261	52.65		
	100	E4	0.126	93.27	0.134	94.03	0.144	92.12	0.167	87.15	0.211	75.65	0.275	50.15		
	125	E5	0.176	90.58	0.167	92.58	0.154	91.59	0.146	88.79	0.147	83.10	0.154	72.02		
	150	E6	0.165	91.14	0.145	93.56	0.126	93.14	0.115	91.22	0.115	86.76	0.126	77.15		
Fet	No.	Tiem-	ECM													
∟3ι.	datos	ро	1	%Red	2	%Red	3	%Red	4	%Red	5	%Red	6	%Red		
	0	E0	0.614	0.00	0.636	0.00	0.658	0.00	0.680	0.00	0.702	0.00	0.724	0.00		
	25	E1	0.350	42.99	0.362	43.05	0.374	43.11	0.386	43.17	0.399	43.22	0.411	43.27		
	50	E2	0.327	46.72	0.338	46.79	0.350	46.86	0.361	46.92	0.372	46.97	0.384	47.03		
h	75	E3	0.324	47.14	0.336	47.21	0.347	47.28	0.358	47.34	0.369	47.39	0.381	47.45		
	100	E4	0.318	48.23	0.329	48.30	0.340	48.35	0.351	48.41	0.362	48.46	0.373	48.51		
	125	E5	0.311	49.26	0.322	49.32	0.333	49.37	0.344	49.42	0.355	49.47	0.366	49.51		
	150	E6	0.304	50.38	0.315	50.44	0.326	50.49	0.336	50.54	0.347	50.59	0.358	50.63		
	0	E0	7.926	0.00	9.731	0.00	9.455	0.00	8.901	0.00	8.556	0.00	8.455	0.00		
	25	E1	1.824	76.99	2.410	75.23	2.436	74.23	2.475	72.19	2.530	70.44	2.572	69.58		
	50	E2	1.352	82.95	1.497	84.62	1.260	86.67	1.335	85.01	1.545	81.95	1.722	79.63		
с	75	E3	1.273	83.94	1.427	85.34	1.230	86.99	1.111	87.52	1.084	87.33	1.129	86.64		
	100	E4	1.309	83.49	1.550	84.07	1.412	85.06	1.303	85.36	1.254	85.35	1.258	85.13		
	125	E5	1.382	82.56	1.634	83.21	1.445	84.71	1.281	85.60	1.178	86.24	1.120	86.75		
	150	E6	1.374	82.66	1.620	83.35	1.431	84.87	1.266	85.78	1.161	86.43	1.104	86.94		

Cuadro B. 25 Cálculo del EM y del ECM de la estimación de Ln K, h y c (Caso 4F)

Figura B. 25 Gráficas del EM y del ECM de la estimación de Ln K, h y c (Caso 4F)

Eat	No.	Tiem- po	EM		ECM											
ESI.	datos		1	%Red	1	%Red	Caso 4	G. Estima (ación con Total 150	25 datos datos de	de h y 25 h y 150 d	datos de latos de c	c en cada)	tiempo		
	0	E0	-0.474	0.0	1.2669	0.0					-					
	25	E1	-0.162	65.84	1.1207	11.54		EM- Erm	or medio							
	50	E2	-0.133	72.03	1.0909	13.89			or mealo							
Ln K	75	E3	-0.155	67.40	1.0909	13.89	ECM-	- Error cu	adrático n	nedio	V	arianza d	oln K−1	5		
	100	E4	-0.161	66.13	1.0640	16.02	2011			louio						
	125	E5	-0.215	54.60	1.0657	15.88	% Red	= Porcent	aie de rec	lucción	м	edia de K	(= 1.6 m/d	ía		
	150	E6	-0.226	-0.226 52.27 1.0590 16.41												
Est.	No.	Tiem-		1	1	1	[E	М	1		1		1		
	datos	ро	1	%Red	2	%Red	3	%Red	4	%Red	5	%Red	6	%Red		
	0	E0	-0.276	0.00	-0.286	0.00	-0.297	0.00	-0.307	0.00	-0.318	0.00	-0.329	0.00		
	25	E1	0.090	67.49	0.093	67.51	0.096	67.53	0.100	67.54	0.103	67.56	0.107	67.58		
	50	E2	0.093	66.39	0.096	66.50	0.099	66.59	0.102	66.68	0.106	66.77	0.109	66.85		
h	75	E3	0.085	69.11	0.088	69.25	0.091	69.38	0.094	69.50	0.097	69.61	0.099	69.72		
	100	E4	0.079	71.29	0.082	71.37	0.085	71.45	0.088	71.53	0.090	71.60	0.093	71.66		
	125	E5	0.078	71.81	0.081	71.87	0.083	71.93	0.086	71.99	0.089	72.04	0.092	72.09		
	150	E6	0.074	73.14	0.077	73.22	0.079	73.29	0.082	73.36	0.085	73.42	0.087	73.48		
	0	E0	2.010	0.00	2.358	0.00	1.885	0.00	1.319	0.00	0.870	0.00	0.551	0.00		
с	25	E1	0.005	99.73	-0.215	90.89	-0.426	77.38	-0.569	56.84	-0.634	27.13	-0.639	-15.92		
	50	E2	0.144	92.83	0.106	95.48	0.030	98.39	-0.048	96.39	-0.097	88.88	-0.110	80.11		
	75	E3	0.120	94.05	0.084	96.43	0.067	96.43	0.097	92.62	0.178	79.58	0.294	46.66		
	100	E4	0.161	92.00	0.177	92.48	0.181	90.42	0.197	85.05	0.240	72.37	0.308	44.16		
	125	E5	0.214	89.33	0.211	91.07	0.190	89.90	0.174	86.83	0.170	80.43	0.178	67.70		
	150	E6	0.205	89.79	0.189	91.97	0.163	91.36	0.143	89.13	0.141	83.83	0.153	72.15		
Est	No.	Tiem-														
200	datos	ро	1	%Red	2	%Red	3	%Red	4	%Red	5	%Red	6	%Red		
	0	E0	0.846	0.00	0.877	0.00	0.908	0.00	0.939	0.00	0.970	0.00	1.001	0.00		
	25	E1	0.414	51.07	0.429	51.13	0.443	51.19	0.458	51.25	0.472	51.30	0.487	51.35		
	50	E2	0.388	54.20	0.401	54.27	0.415	54.33	0.428	54.39	0.442	54.45	0.455	54.50		
h	75	E3	0.389	54.07	0.402	54.14	0.416	54.20	0.429	54.26	0.443	54.32	0.457	54.37		
	100	E4	0.386	54.38	0.400	54.44	0.413	54.50	0.427	54.56	0.440	54.61	0.454	54.66		
	125	E5	0.377	55.44	0.390	55.50	0.404	55.56	0.417	55.61	0.430	55.66	0.443	55.70		
	150	E6	0.370	56.29	0.383	56.35	0.396	56.40	0.409	56.45	0.422	56.50	0.435	56.55		
	0	E0	8.450	0.00	10.352	0.00	10.096	0.00	9.568	0.00	9.251	0.00	9.173	0.00		
	25	E1	1.993	76.42	2.654	74.36	2.757	72.69	2.848	70.23	2.923	68.41	2.969	67.63		
	50	E2	1.464	82.67	1.659	83.97	1.439	85.75	1.535	83.95	1.756	81.01	1.942	78.83		
с	75	E3	1.376	83.72	1.572	84.81	1.391	86.22	1.296	86.45	1.295	86.00	1.364	85.14		
	100	E4	1.427	83.11	1.719	83.39	1.580	84.35	1.451	84.83	1.380	85.08	1.364	85.14		
	125	E5	1.498	82.27	1.805	82.56	1.607	84.08	1.427	85.09	1.311	85.83	1.247	86.41		
	150	E6	1.490	82.37	1.791	82.69	1.593	84.22	1.412	85.24	1.297	85.98	1.237	86.52		

Cuadro B. 26 Cálculo del EM y del ECM de la estimación de Ln K, h y c (Caso 4G)

Figura B. 26 Gráficas del EM y del ECM de la estimación de Ln K, h y c (Caso 4G)

E et	No.	Tiem- po	EM		ECM										
ESI.	datos		1	%Red	1	%Red	Caso 4	H. Estima	ación con 2 (Total 150	25 datos o datos de	de h y 25 h y 150 d	datos de (atos de c)	c en cada	tiempo	
	0	E0	-0.618	0.0	1.4112	0.0									
	25	E1	-0.190	69.29	1.2125	14.08		EM– Err	or medio						
	50	E2	-0.151	75.59	1.1911	15.60			or mealo						
Ln K	75	E3	-0.174	71.78	1.1911	15.60	FCM:	= Error cu	uadrático m	nedio	Va	urianza de	ln K= 1	75	
	100	E4	-0.181	70.76	1.1622	17.65		2.101.00		iouio					
	125	E5	-0.244	60.58	1.1633	17.56	% Red	= Porcent	taie de red	ucción	м	edia de K	(= 1.6 m/d	ía	
	150	E6	-0.255	-0.255 58.80 1.1545 18.19											
Est.	No.	Tiem-													
	datos	ро	1	%Red	2	%Red	3	%Red	4	%Red	5	%Red	6	%Red	
	0	E0	-0.518	0.00	-0.537	0.00	-0.556	0.00	-0.576	0.00	-0.595	0.00	-0.614	0.00	
	25	E1	0.105	79.65	0.109	79.64	0.113	79.62	0.117	79.61	0.121	79.60	0.125	79.59	
	50	E2	0.109	78.91	0.113	78.96	0.117	79.00	0.121	79.04	0.124	79.08	0.128	79.12	
h	75	E3	0.097	81.23	0.100	81.29	0.104	81.35	0.107	81.40	0.110	81.45	0.114	81.50	
	100	E4	0.092	82.24	0.095	82.27	0.098	82.31	0.102	82.34	0.105	82.37	0.108	82.40	
	125	E5	0.090	82.59	0.093	82.62	0.097	82.65	0.100	82.67	0.103	82.69	0.106	82.72	
	150	E6	0.086	83.31	0.089	83.35	0.092	83.38	0.096	83.41	0.099	83.44	0.102	83.47	
	0	E0	2.141	0.00	2.455	0.00	1.931	0.00	1.335	0.00	0.875	0.00	0.555	0.00	
с	25	E1	-0.010	99.52	-0.268	89.10	-0.510	73.59	-0.677	49.28	-0.757	13.46	-0.770	-38.74	
	50	E2	0.161	92.46	0.127	94.81	0.047	97.55	-0.039	97.07	-0.093	89.33	-0.106	80.99	
	75	E3	0.154	92.82	0.119	95.14	0.090	95.36	0.110	91.75	0.192	78.02	0.321	42.27	
	100	E4	0.199	90.73	0.223	90.92	0.215	88.86	0.221	83.45	0.260	70.25	0.330	40.64	
	125	E5	0.252	88.22	0.254	89.64	0.225	88.37	0.197	85.26	0.187	78.59	0.194	65.00	
	150	E6	0.245	88.58	0.235	90.45	0.199	89.70	0.169	87.33	0.162	81.52	0.175	68.47	
Fet	No.	Tiem-	ECM												
L3t.	datos	ро	1	%Red	2	%Red	3	%Red	4	%Red	5	%Red	6	%Red	
	0	E0	1.139	0.00	1.181	0.00	1.222	0.00	1.264	0.00	1.305	0.00	1.347	0.00	
	25	E1	0.484	57.51	0.501	57.56	0.518	57.61	0.535	57.65	0.552	57.70	0.569	57.74	
	50	E2	0.453	60.20	0.469	60.26	0.485	60.31	0.501	60.36	0.517	60.40	0.533	60.45	
h	75	E3	0.459	59.70	0.475	59.76	0.491	59.81	0.507	59.86	0.523	59.91	0.539	59.95	
	100	E4	0.461	59.54	0.477	59.59	0.493	59.65	0.509	59.69	0.526	59.74	0.542	59.78	
	125	E5	0.449	60.59	0.465	60.64	0.480	60.69	0.496	60.74	0.512	60.78	0.528	60.82	
	150	E6	0.442	61.20	0.458	61.25	0.473	61.29	0.489	61.34	0.504	61.38	0.520	61.42	
	0	E0	8.919	0.00	10.915	0.00	10.690	0.00	10.198	0.00	9.914	0.00	9.860	0.00	
	25	E1	2.137	76.04	2.887	73.55	3.094	71.06	3.245	68.18	3.340	66.31	3.389	65.63	
	50	E2	1.567	82.43	1.825	83.28	1.637	84.69	1.761	82.73	1.994	79.89	2.189	77.80	
с	75	E3	1.476	83.45	1.726	84.19	1.566	85.36	1.499	85.31	1.525	84.62	1.619	83.58	
	100	E4	1.540	82.73	1.889	82.69	1.753	83.60	1.610	84.21	1.522	84.64	1.492	84.87	
	125	E5	1.591	82.16	1.965	81.99	1.772	83.43	1.587	84.44	1.469	85.18	1.406	85.74	
	150	E6	1.581	82.27	1.952	82.12	1.759	83.54	1.575	84.55	1.460	85.27	1.404	85.76	

Cuadro B. 27 Cálculo del EM y del ECM de la estimación de Ln K, h y c (Caso 4H)

Figura B. 27 Gráficas del EM y del ECM de la estimación de Ln K, h y c (Caso 4H)

Eat	No.	Tiem- po	EM		ECM											
ESI.	datos		1	%Red	1	%Red	Caso 4	II. Estima	ación con 2 (Total 150	25 datos o datos de	de h y 25 d h y 150 d	datos de o atos de c	c en cada ')	tiempo		
	0	E0	-0.760	0.0	1.5544	0.0										
	25	E1	-0.205	72.98	1.2997	16.38		EM– Err	or medio		Covarianza L HS					
	50	E2	-0.155	79.55	1.2897	17.03		200-20								
Ln K	75	E3	-0.180	76.27	1.2897	17.03	ECM-	= Error cu	adrático m	nedio	Varianza do Ln K- 20					
	100	E4	-0.188	75.30	1.2591	19.00	Low			louio						
	125	E5	-0.257	66.14	1.2571	19.13	% Red	= Porcent	aie de red	ucción	м	edia de K	(= 1.6 m/d	ía		
	150	E6	-0.268	-0.268 64.71 1.2458 19.85												
Est.	No.	Tiem-		EM 1 %Pod 2 %Pod 3 %Pod 4 %Pod 5 %Pod 6 %D												
	datos	ро	1	%Red	2	%Red	3	%Red	4	%Red	5	%Red	6	%Red		
	0	E0	-0.786	0.00	-0.815	0.00	-0.844	0.00	-0.873	0.00	-0.902	0.00	-0.931	0.00		
	25	E1	0.123	84.39	0.127	84.36	0.132	84.35	0.137	84.33	0.141	84.31	0.146	84.30		
	50	E2	0.127	83.82	0.132	83.85	0.136	83.89	0.140	83.92	0.145	83.95	0.149	83.98		
h	75	E3	0.109	86.08	0.113	86.12	0.117	86.15	0.121	86.18	0.124	86.21	0.128	86.24		
	100	E4	0.105	86.65	0.109	86.68	0.112	86.70	0.116	86.72	0.120	86.74	0.123	86.75		
	125	E5	0.103	86.89	0.107	86.91	0.110	86.93	0.114	86.95	0.118	86.96	0.121	86.98		
	150	E6	0.099	87.34	0.103	87.37	0.106	87.39	0.110	87.41	0.113	87.43	0.117	87.45		
	0	E0	2.261	0.00	2.542	0.00	1.971	0.00	1.348	0.00	0.879	0.00	0.559	0.00		
с	25	E1	-0.030	98.65	-0.325	87.20	-0.600	69.54	-0.795	41.04	-0.894	-1.69	-0.918	-64.22		
	50	E2	0.176	92.23	0.147	94.21	0.066	96.67	-0.027	97.98	-0.084	90.43	-0.093	83.37		
	75	E3	0.190	91.58	0.159	93.73	0.115	94.16	0.122	90.96	0.202	77.03	0.339	39.41		
	100	E4	0.237	89.52	0.268	89.46	0.246	87.54	0.237	82.40	0.271	69.19	0.341	38.96		
	125	E5	0.288	87.25	0.297	88.33	0.255	87.06	0.214	84.12	0.197	77.56	0.203	63.72		
	150	E6	0.282	87.54	0.278	89.06	0.232	88.24	0.190	85.88	0.177	79.89	0.190	66.04		
Fet	No.	Tiem-	ECM													
∟3ι.	datos	ро	1	%Red	2	%Red	3	%Red	4	%Red	5	%Red	6	%Red		
	0	E0	1.481	0.00	1.535	0.00	1.589	0.00	1.644	0.00	1.698	0.00	1.752	0.00		
	25	E1	0.560	62.16	0.580	62.21	0.600	62.24	0.620	62.28	0.640	62.31	0.660	62.34		
	50	E2	0.525	64.56	0.543	64.61	0.562	64.65	0.580	64.69	0.599	64.73	0.617	64.76		
h	75	E3	0.536	63.81	0.555	63.85	0.574	63.90	0.593	63.94	0.612	63.98	0.630	64.01		
	100	E4	0.542	63.40	0.561	63.45	0.580	63.49	0.599	63.53	0.618	63.57	0.638	63.61		
	125	E5	0.527	64.40	0.546	64.44	0.565	64.48	0.583	64.52	0.602	64.56	0.620	64.59		
	150	E6	0.521	64.80	0.540	64.85	0.558	64.89	0.576	64.93	0.595	64.96	0.613	64.99		
	0	E0	9.339	0.00	11.424	0.00	11.238	0.00	10.788	0.00	10.539	0.00	10.508	0.00		
	25	E1	2.260	75.80	3.115	72.73	3.448	69.31	3.667	66.01	3.782	64.11	3.832	63.54		
	50	E2	1.664	82.19	1.997	82.52	1.854	83.50	2.010	81.37	2.259	78.57	2.467	76.53		
с	75	E3	1.577	83.12	1.883	83.51	1.745	84.47	1.705	84.20	1.760	83.30	1.880	82.11		
	100	E4	1.647	82.36	2.058	81.98	1.931	82.82	1.779	83.51	1.682	84.04	1.644	84.36		
	125	E5	1.661	82.21	2.114	81.50	1.938	82.75	1.761	83.68	1.651	84.33	1.598	84.80		
	150	E6	1.649	82.34	2.100	81.62	1.928	82.84	1.753	83.75	1.649	84.36	1.602	84.75		

Cuadro B. 28 Cálculo del EM y del ECM de la estimación de Ln K, h y c (Caso 4I)

Figura B. 28 Gráficas del EM y del ECM de la estimación de Ln K, h y c (Caso 4I)

Est.	No. datos	Tiem- po	EM		ECM										
			1	%Red	1	%Red	Caso 4	J. Estim	ación con (Total 150	25 datos) datos de	de h y 25 datos de c en cada tiempo e h y 150 datos de c)				
Ln K	0	E0	-1.040	0.0	1.8376	0.0									
	25	E1	-0.196	81.16	1.4694	20.04									
	50	E2	-0.120	88.44	1.4923	18.79									
	75	E3	-0.147	85.87	1.4923	18.79	ECM- Error quadrático medio								
	100	E4	-0.160	84.62	1.4576	20.68									
	125	E5	-0.239	77.04	1.4440	21.42	% Red	= Porcent	aie de red	N	Media de K= 1.6 m/día				
	150	E6	-0.249	76.07	1.4274	22.32	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								
Est.	No. datos	Tiem- po	EM												
			1	%Red	2	%Red	3	%Red	4	%Red	5	%Red	6	%Red	
h	0	E0	-1.408	0.00	-1.460	0.00	-1.511	0.00	-1.563	0.00	-1.614	0.00	-1.666	0.00	
	25	E1	0.163	88.42	0.169	88.40	0.176	88.38	0.182	88.37	0.188	88.35	0.194	88.34	
	50	E2	0.168	88.07	0.174	88.10	0.179	88.13	0.185	88.16	0.191	88.19	0.196	88.22	
	75	E3	0.135	90.42	0.140	90.43	0.144	90.45	0.149	90.46	0.154	90.48	0.158	90.49	
	100	E4	0.132	90.65	0.136	90.67	0.141	90.68	0.145	90.69	0.150	90.71	0.155	90.72	
	125	E5	0.131	90.70	0.136	90.72	0.140	90.73	0.145	90.74	0.149	90.75	0.154	90.76	
	150	E6	0.128	90.88	0.133	90.89	0.137	90.91	0.142	90.92	0.146	90.94	0.151	90.95	
с	0	E0	2.475	0.00	2.693	0.00	2.039	0.00	1.370	0.00	0.886	0.00	0.566	0.00	
	25	E1	-0.087	96.50	-0.462	82.84	-0.809	60.35	-1.066	22.16	-1.213	-36.98	-1.269	-124.31	
	50	E2	0.195	92.13	0.182	93.24	0.105	94.86	0.007	99.48	-0.048	94.62	-0.041	92.69	
	75	E3	0.271	89.06	0.250	90.71	0.170	91.67	0.138	89.94	0.201	77.30	0.345	38.94	
	100	E4	0.313	87.36	0.351	86.96	0.290	85.77	0.247	81.99	0.266	69.93	0.340	39.88	
	125	E5	0.354	85.71	0.373	86.14	0.304	85.10	0.232	83.10	0.196	77.83	0.197	65.25	
	150	E6	0.349	85.91	0.358	86.72	0.286	85.96	0.218	84.09	0.190	78.59	0.200	64.69	
Ect	No. datos	Tiem- po	ECM												
ESI.			1	%Red	2	%Red	3	%Red	4	%Red	5	%Red	6	%Red	
h	0	E0	2.305	0.00	2.389	0.00	2.473	0.00	2.557	0.00	2.641	0.00	2.725	0.00	
	25	E1	0.738	67.99	0.764	68.02	0.790	68.04	0.817	68.06	0.843	68.09	0.869	68.11	
	50	E2	0.690	70.05	0.715	70.08	0.739	70.11	0.763	70.14	0.788	70.17	0.812	70.19	
	75	E3	0.716	68.95	0.741	68.99	0.766	69.01	0.792	69.04	0.817	69.07	0.842	69.09	
	100	E4	0.727	68.44	0.753	68.47	0.779	68.50	0.805	68.53	0.830	68.56	0.856	68.59	
	125	E5	0.709	69.25	0.734	69.28	0.759	69.31	0.784	69.34	0.809	69.37	0.834	69.39	
	150	E6	0.706	69.36	0.731	69.40	0.756	69.43	0.781	69.45	0.806	69.48	0.831	69.50	
c	0	E0	10.072	0.00	12.323	0.00	12.226	0.00	11.873	0.00	11.695	0.00	11.708	0.00	
	25	E1	2.478	75.40	3.603	70.76	4.251	65.23	4.615	61.13	4.767	59.24	4.816	58.87	
	50	E2	1.865	81.48	2.370	80.77	2.352	80.76	2.598	78.12	2.903	75.18	3.154	73.06	
	75	E3	1.792	82.21	2.210	82.07	2.111	82.73	2.117	82.17	2.227	80.95	2.400	79.50	
	100	E4	1.856	81.57	2.401	80.52	2.315	81.07	2.171	81.71	2.076	82.25	2.037	82.60	
	125	E5	1.762	82.50	2.394	80.58	2.292	81.25	2.163	81.79	2.097	82.07	2.079	82.24	
	150	E6	1.740	82.72	2.378	80.70	2.290	81.27	2.166	81.75	2.108	81.97	2.098	82.08	

Cuadro B. 29 Cálculo del EM y del ECM de la estimación de Ln K, h y c (Caso 4J)

Figura B. 29 Gráficas del EM y del ECM de la estimación de Ln K, h y c (Caso 4J)

Est.	No. datos	Tiem- po	EM		ECM										
			1	%Red	1	%Red	Caso 4K. Estimación con 25 datos de h y 25 datos de c en cada tiem (Total 150 datos de h y 150 datos de c)							a tiempo	
Ln K	0	E0	-1.316	0.0	2.1194	0.0									
	25	E1	-0.126	90.40	1.6533	21.99	EM- Error medio								
	50	E2	-0.019	98.54	1.7247	18.62									
	75	E3	-0.047	96.41	1.7247	18.62	ECM= Error cuadrático medio Varianza de Ln K= 3.0								
	100	E4	-0.072	94.52	1.6845	20.52									
	125	E5	-0.156	88.17	1.6577	21.78	% Red= Porcentaje de reducción Media de K= 1.6 m/día								
	150	E6	-0.165 87.47 1.6375 22.74												
Est.	No. datos	Tiem- po						EM							
			1	%Red	2	%Red	3	%Red	4	%Red	5	%Red	6	%Red	
h	0	E0	-2.160	0.00	-2.238	0.00	-2.317	0.00	-2.396	0.00	-2.474	0.00	-2.553	0.00	
	25	E1	0.213	90.14	0.221	90.12	0.229	90.11	0.237	90.10	0.245	90.08	0.253	90.07	
	50	E2	0.217	89.94	0.224	89.97	0.232	90.01	0.239	90.04	0.246	90.06	0.253	90.09	
	75	E3	0.164	92.41	0.170	92.42	0.175	92.43	0.181	92.43	0.187	92.44	0.193	92.45	
	100	E4	0.161	92.53	0.167	92.55	0.172	92.56	0.178	92.57	0.184	92.58	0.189	92.59	
	125	E5	0.164	92.42	0.169	92.43	0.175	92.44	0.181	92.46	0.186	92.47	0.192	92.48	
	150	E6	0.163	92.47	0.168	92.48	0.174	92.49	0.180	92.51	0.185	92.52	0.191	92.53	
с	0	E0	2.669	0.00	2.823	0.00	2.098	0.00	1.391	0.00	0.893	0.00	0.571	0.00	
	25	E1	-0.167	93.75	-0.637	77.45	-1.066	49.17	-1.400	-0.69	-1.607	-79.91	-1.703	-198.15	
	50	E2	0.201	92.45	0.206	92.69	0.142	93.25	0.049	96.50	0.007	99.22	0.040	92.92	
	75	E3	0.358	86.58	0.348	87.67	0.221	89.48	0.133	90.43	0.163	81.77	0.300	47.44	
	100	E4	0.383	85.64	0.417	85.24	0.305	85.45	0.221	84.08	0.227	74.53	0.310	45.82	
	125	E5	0.412	84.55	0.437	84.51	0.333	84.15	0.223	83.94	0.165	81.55	0.155	72.92	
	150	E6	0.407	84.74	0.424	85.00	0.321	84.69	0.222	84.03	0.175	80.36	0.178	68.80	
Fet	No.	Tiem- po	ECM												
ESt.	datos		1	%Red	2	%Red	3	%Red	4	%Red	5	%Red	6	%Red	
	0	E0	3.322	0.00	3.442	0.00	3.563	0.00	3.685	0.00	3.806	0.00	3.927	0.00	
h	25	E1	0.957	71.20	0.991	71.22	1.025	71.24	1.059	71.25	1.093	71.27	1.128	71.28	
	50	E2	0.894	73.10	0.925	73.12	0.957	73.14	0.989	73.17	1.020	73.18	1.052	73.20	
	75	E3	0.937	71.80	0.970	71.82	1.004	71.84	1.037	71.86	1.070	71.88	1.104	71.89	
	100	E4	0.950	71.39	0.984	71.41	1.018	71.44	1.052	71.46	1.085	71.48	1.119	71.50	
	125	E5	0.932	71.94	0.965	71.97	0.998	71.99	1.031	72.01	1.064	72.03	1.098	72.05	
	150	E6	0.935	71.85	0.968	71.88	1.001	71.90	1.034	71.93	1.068	71.95	1.101	71.97	
c	0	E0	10.714	0.00	13.116	0.00	13.119	0.00	12.866	0.00	12.762	0.00	12.813	0.00	
	25	E1	2.704	74.76	4.206	67.93	5.235	60.10	5.753	55.28	5.941	53.44	5.989	53.26	
	50	E2	2.112	80.29	2.810	78.58	2.962	77.42	3.345	74.01	3.749	70.62	4.074	68.21	
	75	E3	2.042	80.94	2.557	80.50	2.488	81.04	2.527	80.36	2.692	78.91	2.916	77.24	
	100	E4	2.082	80.57	2.781	78.80	2.778	78.82	2.682	79.16	2.609	79.55	2.578	79.88	
	125	E5	1.880	82.46	2.693	79.47	2.703	79.40	2.653	79.38	2.652	79.22	2.682	79.07	
	150	E6	1.845	82.78	2.681	79.56	2.717	79.29	2.676	79.20	2.682	78.98	2.718	78.79	

Cuadro B. 30 Cálculo del EM y del ECM de la estimación de Ln K, h y c (Caso 4K)

Figura B. 30 Gráficas del EM y del ECM de la estimación de Ln K, h y c (Caso 4K)

Anexo C. Posters

Conference MODFLOW and More: Ground Water and Public Policy

Green Center on the Colorado School of Mines Campus in Golden, Colorado, U May 19-21, 2008.

Parameter estimation of stochastic flow models for the design of groundwater monitoring networks

J Briseño¹ and G Herrera²

(1) National Autonomous University of Mexico, UNAM-Campus Morelos, Jiutepec, Mor., México. Email: vanebri@mexico.com (2) Mexican Institute of Water Technology, IMTA, Jiutepec, Mor., México. Email: gherrera@tlaloc.imta.mx

4. CONCLUSIONS

- Using the Kalman filter for parameter estimation, it is observed that when there is input of In K data available, it is possible to obtain a better estimation and, consequently, there is a reduction of the errors due to the contribution of the data. But the estimate error magnitudes were not diminished with the H data.
- It is very important to consider that, in areas where there is no data available to make the parameter estimations (neither H nor In K); there are no considerable changes to the variance. On the contrary, in areas where there does exist some data, the final variance is reduced. In the case study, the greatest variance is found in the NW zone, due to the lack of data to reduce it.
- Until now, the Kalman filter has only been used in the estimation of In K using In K and H data in a synthetic case study. Now, its use is being
 tested for the estimation of In K using H and contaminant concentration data, since it has been reported by other authors that contaminant
 concentration data contribute more in the estimations of In K than H data.
- The estimation of H and In K, achieved using the Kalman filter, are within the confidence interval criterion of 68%.

REFERENCES

Baku, D. G. F. Pieder, A. Kenni, D. P. Abdek, and S. A. Sethooff, (1993). Chemical imagority fore dimensioning grandwater flow (1997) (Tricents Transport Cocie), Rep. 84-WR3, Princetta University. Desember 101 Cell Engineering Princeton, N.J.
 Bitsein, J. and Herrera, G. (2007). Space-fram Design of Pacometrics Groundwater Monitoring imparator and induces. WAR-DC Earcolastics, Espinal. Abril. 2007.
 Bitsein, J. and A. Guornet, GSLB (1998). Geostatistical Software Library and User's Guide. Colored Monitoring American Science (1998). Geostatistical Software Library and User's Guide. Colored Monitoring, American Science, Nat. J. Science, Nat. J. Science, Colored Monitoring, Science, Barrier, S. Statistica, Marcine Castal, Science, Colored Monitoring, Science, Science, Colored Monitoring, Science, Science, Colored Monitoring, Science, Scien

"A space-time ensemble Kalman filter for state and parameter estimation of groundwater transport models" Jessica Briseño¹, Graciela S. Herrera²

¹National Autonomous University of México, Engineering School, México (ievabrir@hotmail.com), ²National Autonomous University of México, Geophysics Institute, México, (ghz@geofisica.unam.mx)

Table 1. Synthetic examples

1.3 25 data h & 25 data

2.1 25 data h

2.2 25 data C

2.3 25 data h & 25 da

SGSim alizations 1.2 25 data C

1. Introduction Groundwater monitoring networks are essential in order to estimate groundwater levels and quality parameters and its evolution. Herrera (1998) proposed a method for the optimal design of groundwater quality monitoring networks that involves space and time in a combined form. The method was applied later by Herrera et al (2001) and by Herrera and Pinder (2005). To get the estimates of the contaminant concentration being analyzed, this method uses a space-time ensemble Kalman filter, based on a stochastic flow and transport model. When the method is applied, it is important that the characteristics of the stochastic model be congruent with field data, but, in general, it is laborious to manually achieve a good match between them.

2. Objective and methodology

The objective is to extend the space-time ensemble Kalman filter proposed by Herrera, to estimate the hydraulic conductivity (K), together with hydraulic head and contaminant concentration, and its application in a synthetic example.

The method has three steps:

- 1. Given the mean and the semivariogram of the natural logarithm of hydraulic conductivity (In K), random ealizations of this parameter are obtained through two alternatives: Gaussian simulation (SGSim) and Latin Hypercube Sampling method (LHS).
- 2. The stochastic model is used to produce hydraulic head (h) and contaminant (C) realizations, for each one of the social function is used to produce Hydraulic need (h) and containing (c) realizations, for each other the conductivity realizations. With these realization the mean of h k, h and C are obtained, for h and C, the mean is calculated in space and time, and also the cross covariance matrix h-In K-C in space and time. The covariance matrix is obtained averaging products of the In K, h and C realizations on the estimation points and times, and the positions and times with data of the analyzed variables.
- 3. Finally the In K, h and C estimate are obtained using the space-time ensemble Kalman filter. The realization mean for each one of the variables is used as the prior space-time estimate for the Kalman filter, and the space-time cross-covariance matrix of h-In K-C as the prior estimate-error covariance-matrix.

3. Synthetic case study

The synthetic example has a modeling area of 700 x 700 square meters; a triangular mesh model with 702 nodes and 1306 elements is used. A pumping well located in the central part of the study area is considered. For the contaminant transport model, a contaminant source area is present in the western part of the study area.

3.1 Geostatistical analysis for log conductivity and random realization

3.2 Groundwater and stochastic flow models

The deterministic flow and transport model was developed using the Princeton Transport Code (PTC, 1993) simulator. The computational grid of the stochastic and deterministic model are the same.

Figure 2. Stochastic flow and transport model

Figure 1, Deterministic flow and transport model

Figure 3, 4 and 5 shows the In K, h and C prior estimates, the In K, h and C realizations and the In K, h and C estimates in the study case 1.3 and 2.3. From a simple analysis of the graphs of this figure, it is difficult to determine the magnitude of the estimates errors obtained with the Kalman filter.

3.3 Parameter estimation using the Kalman filter

The Kalman filter requires a prior In K, h and C estimates (mean In K. h

and C) and a cross covariance matrix in K-h-C of the estimate errors. In this study, the average of the 3000 In K (SGSim) and the average of the

1000 In K (LHS) realizations and the cross covariance matrix In K-h-C, obtained from the stochastic model realizations, were used to this end.

Six study cases (Table 1) were established to estimate In K. h and C using

different data sets and a prior space-time covariance matrix calculated

with SGSim and LHS realizations

4. Results

1.3 Base

2.1

For a more detailed analysis of the results the mean error (ME) and mean square error (MSE) were calculated. The estimate error, e_i, is analyzed. Figure 3. h and C estimation of the study case 1.3 This error is calculated as the difference between the data of the In K, h and C realizations (SGSim or LHS) and the In K, h - stilling and C estimated with the Kalman filter at the points of the estimation mesh with the different case studies $ME = \frac{1}{n}\sum_{i=1}^{n}e_{i}$ $MSE = \frac{1}{n} \sum_{i=1}^{n} (e_i)^2$ Case 1.3 Read The locations where estimations of Ln K, h and C will be obtained are associated with nodes, which we referred stings to as the estimation mesh shown in Figure 2. This mesh is composed by 48 estimation point distributed throughout the study area (same localization for In K, h and C). The results of the ME and MSE nd the reduction percentage at different study cases are presented in Table 2 (only for 6) and the graphs in 100 figure 6 (for all times).

5. Conclusion

- The results analysis was done through the mean error, root mean square error, initial and final estimation maps of h. In K and C at each time, and the
- The relation shares was only and the relation of the relation of
- using LHS, and took three times longer (48 hours) to run 3000 simulations of In K using SGSim.
 The results show that for both alternatives, the Kalman filter estimates for h, In K and C using h and C data, have errors which magnitudes decrease as
- ♦ The results show wat to over energy and the second state added.
 ♦ The results show wat to over energy added estimate, in cases where the estimation is performed with h, C and h and C data, the percentage reduction was greater using SGSIm to LHS. However the percentage reduction for C estimates using LHS than SGSIm was greater.
- References
- ISENO, J. and HERRERA, G, (2007). Space
- Lippink. ALV, 2007. DIDTOC, C. Y., and DORMEL AG., GOLD [1998]. Genetativitical Software Ubrary and Ubar's Golds, Oxford Univ. Press, New York. INERERAG., S., SLISPIG, Cott Efficient Groundwater Quality Sampling Network Onesp., P. D. Danis, Ubranity of Wennet, Karlington, Wennet, RESERICA, G., SAMPARCE, A., RINGE D. et al. MURIAR (2002). This is the on-the American Detailed and any automatical estimation, INERERAG, S., and PROED G.S. DODD, pass-bries againstation of groundwater quality sampling research Water Research, Not 41, No. 21, INERERAG, S., and PROED G.S. DODD, pass-bries againstation of groundwater quality sampling research Water Research, No. 41, No. 21, No
- vincineny, n.z. SIMUTA R. and HERRERA G. (20xx). Convergence analysis for Latio-Hypercube Lattice-Sample Selection Strategies for 1D correlated random hydraulic-conductivity fields. To be submitted to Geofiura International. DAVAX T. and FINDER G., (2003) Latin hypercube lattice sample selection strategy/or correlated random hydraulic conductivity fields, Water Resources Research, Vol. 30, No. 8, 1226, doi:10.1029/2002WIB01822.

Input data

25 data h

Figure 4. h and C estimation of the study case 2.3

